• Title/Summary/Keyword: Micro Bead

Search Result 61, Processing Time 0.031 seconds

Polyelectrolyte Micropatterning Using Agarose Plane Stamp and a Substrate Having Microscale Features on Its Surface

  • Lee, Min-Jung;Lee, Nae-Yoon;Lee, Sang-Kil;Park, Sung-Su;Kim, Youn-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1539-1542
    • /
    • 2005
  • We have introduced polyelectrolyte micro-patterning technique employing agarose plane stamp and a hard substrate having microscale features on its surface. With this method, chemically micropatterned surfaces with both positive and negative functionalities were successfully embedded in well-defined microstructures, and selective impartment of charge functionalities was confirmed by patterning bead bearing surface charge. Furthermore, this technique allows highly sensitive immobilization of protein onto targeted surface simply by endowing functionalities, which extends the potential of its use as a tool for high-throughput protein microarray and proteomics. Because plane agarose stamp is free of structures on its surface, there is no concern for pattern collapse, and the combination of agarose plane stamp with patterned substrate is more suited for selective protein patterning compared with adopting surface-patterned agarose stamp with flat substrate. Our technique using agarose plane stamp and a substrate having microscale features on its surface suggests a range of possible applications, including the micropatterning of biofunctionalized copolymer having polyelectrolyte block, immobilization of micro- and nanoparticle with biofunctionalities such as biotin and streptavidine, and establishing optoelectronic microstructures with micro-beads on various surfaces.

A Basic Study on the Development of Domestic Underwater Wet Arc Welding Electrode (습식 수중 아크용접봉의 국산화개발에 관한 기초연구)

  • 김민남;김복인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1122-1129
    • /
    • 2001
  • Underwater wet arc welding process was experimentally investigated by using the six types of flux coated electrodes of 3.2 mm diameter and the KR-RA steel plate of 11 mm thickness as base metal. Two types of electrodes were domestic covered arc welding electrode(CR13, CR14) and another two types of wet welding electrodes(UWCS, TN20)were imported goods, and the other two type (UWX1, UWX2) were individually designed flux coated electrodes for experimental welding purpose. Main experimental results are summerized as follows: 1. It is ascertained that individually designed flux coated electrode(UWX1) could be used in practice with KR-RA steel plate for underwater wet arc bead welds. 2. Welding arc can be generated easily and considerably kept in stable using TN20 and UWX1 electrodes. 3. The micro Vickers hardness value and the portion of martensite in the HAZ were increased in all the electrodes by rapid cooling rate, but it is relatively maintain stable for UWCS, TN20 and UWX1 electrodes.

  • PDF

Encapsulation of Agro-Probiotics for Promoting Viable Cell Activity (생균력 증진을 위한 농업용 미생물제 미세캡슐화)

  • Choi, So-Young;Yoon, Min-Ho;Whang, Kyung-Sook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.287-293
    • /
    • 2005
  • In this work, to develop soil inoculant which maintains stable viable cells and normalized quality, studies on micro-encapsulation with bacteria and yeast cells were performed by investigating materials and methods for micro-encapsulation as well as variation and stability of encapsulated cells. Preparation of capsule was conducted by application of extrusion system using micro-nozzle and peristaltic pump. K-carragenan and Na-alginate were selected as best carrier for gelation among K-carageenan, Na-alginate, locust bean gum, cellulose acetate phthalate (CAP), chitosan and gelatin tested. Comparing the gels prepared with Bacillus sp. KSIA-9 and carriers of 1.5% concentration, although viable cell of K-carragenan and Na-alginate was six times higher than those of other, Na-alginate was finally selected as carrier for gelation because it is seven times cheaper than K-carragenan. The gel of 1.5% Na-alginate was also observed to have the best morphology with circular hardness polymatrix and highest viable cell. When investigating the stability of encapsulated cells and the stabilizer effect, free cells were almost dead within 30 or 40 days whereas encapsulated cells decreased in 10% after 30 days and 15-30% even after 120 days. As stabilizer for maintaining viable cell, both 1% starch and zeolite appeared to possess the level of 70-80% cell for bacteria and yeast until after 120 days.

Highly Sensitive Gas Sensors Based on Nanostructured $TiO_2$ Thin Films

  • Jang, Ho-Won;Mun, Hui-Gyu;Kim, Do-Hong;Sim, Yeong-Seok;Yun, Seok-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • $TiO_2$ is a promising material for gas sensors. To achieve high sensitivities, the material should exhibit a large surface-to-volume ratio and possess the high accessibility of the gas molecules to the surface. Accordingly, a wide variety of porous $TiO_2$ nanomaterials synthesized by wet-chemical methods have been reported for gas sensor applications. Nonetheless, achieving the large-area uniformity and comparability with well-established semiconductor production processes of the methods is still challenging. An alternative method is soft-templating which utilizes nanostructured inorganic or organic materials as sacrificial templates for the preparation of porous materials. Fabrication of macroporous $TiO_2$ films and hollow $TiO_2$ tubes by soft-templating and their gas sensing applications have been reported recently. In these porous materials composed of assemblies of individual micro/nanostructures, the form of links or necks between individual micro/nanostructures is a critical factor to determine gas sensing properties of the material. However, a systematic study to clarify the role of links between individual micro/nanostructures in gas sensing properties of a porous metal oxide matrix is thoroughly lacking. In this work, we have demonstrated a fabrication method to prepare highly-ordered, embossed $TiO_2$ films composed of anatase $TiO_2$ hollow hemispheres via soft-templating using polystyrene beads. The form of links between hollow hemispheres could be controlled by $O_2$ plasma etching on the bead templates. This approach reveals the strong correlation of gas sensitivity with the form of the links. Our experimental results highlight that not only the surface-to-volume ratio of an ensemble material composed of individual micro/nanostructures but also the links between individual micro/nanostructures play a critical role in evaluating the sensing properties of the material. In addition to this general finding, the facileness, large-scale productivity, and compatability with semiconductor production process of the proposed fabrication method promise applications of the embossed $TiO_2$ films to high-quality sensors.

  • PDF

Detection Property of Red Blood Cell-Magnetic Beads Using Micro Coil-Channeland GMR-SV Device (마이크로 코일-채널과 GMR-SV 소자를 이용한 적혈구-자성비드 검출 특성연구)

  • Park, Ji-Soo;Kim, Nu-Ri;Jung, Hyun-Jun;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • The micro device, coil, and channel for the biosensor integrated with the GMR-SV device based on the antiferromagnetic IrMn layer was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ passed on the micro channel, the movement of $RBC+{\mu}Beads$ is controlled by the electrical AC input signal. The $RBC+{\mu}Beads$ having a micro-magnetic field captured above the GMR-SV device is changed as the output signals for detection status. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property as the membrane's deformation of RBC coupled to magnetic beads.

Movement and evolution of macromolecules in a grooved micro-channel

  • Zhou, L.W.;Liu, M.B.;Chang, J.Z.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.157-172
    • /
    • 2013
  • This paper presented an investigation of macromolecular suspension in a grooved channel by using the dissipative particle dynamics (DPD) with finitely extensible non-linear elastic (FENE) bead spring chains model. Before studying the movement and evolution of macromolecules, the DPD method was first validated by modeling the simple fluid flow in the grooved channel. For both simple fluid flow and macromolecular suspension, the flow fields were analyzed in detail. It is found that the structure of the grooved channel with sudden contraction and expansion strongly affects the velocity distribution. As the width of the channel reduces, the horizontal velocity increases simultaneously. Vortices can also be found at the top and bottom corners behind the contraction section. For macromolecular suspension, the macromolecular chains influence velocity and density distribution rather than the temperature and pressure. Macromolecules tend to drag simple fluid particles, reducing the velocity with density and velocity fluctuations. Particle trajectories and evolution of macromolecular conformation were investigated. The structure of the grooved channel with sudden contraction and expansion significantly influence the evolution of macromolecular conformation, while macromolecules display adaptivity to adjust their own conformation and angle to suit the structure so as to pass the channel smoothly.

Study on Real Time Sensor Monitoring Systems Based on Pulsed Laser for Microplastic Detection in Tap Water (펄스 레이저 기반 담수용 미세 플라스틱 실시간 센서 모니터링 시스템 연구)

  • Han, Seung Heon;Kim, Dae Geun;Jung, Haeng Yun;Kim, Seon Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.294-298
    • /
    • 2019
  • Pulsed laser-based optical sensor monitoring systems for real time microplastic particle counting are proposed and developed in this study. To develop our real time monitoring system, we used a 450 nm pulsed laser and a photomultiplier with very high quantum efficiency. First, we demonstrated that the microplastic particle counting system could detect standard micro bead samples of 100, 250, and $500{\mu}m$ in river water. We then performed research concerning pulsed laser-based optical spectral sensor systems for real time microplastic monitoring. Additionally, we demonstrated that the real time microplastic remote monitoring system using LoRa communications could detect microplastic in the tap water resource protection area.

A Study on the Welding Behavior of A3003 Aluminium Alloy Thin Sheet by Nd : YAG Laser Beam (박판 A3003 Al합금의 Nd : YAG 레이저빔 용접에 관한 연구)

  • 허인석;김병철;김도훈;김진수;이한용
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • This work was carried out to investigate the welding behavior of thin A3003 Al alloy sheets by Nd : YAG laser beam. Considering bead shape and mechanical properties, the laser pulse shapes selected were two kinds of 2-division and 3-division by varying power level and pulse duration. In order to obtain optimum conditions, the factorial design method and central composite design method were applied. Tensile test, optical microscopy, micro hardness test and TEM analysis were performed. Due to the annealing caused by thermal effect during laser welding, precipitates were coarsended. The HAZ was softened and failed during tensile test. The hardness of HAZ was lower than that of base metal, since the heat input relieved the work hardening effect and caused grain growth.

  • PDF

Fabrication and Performance Evaluation of a Micro Separation Chip of Magnetic Beads Using Magnetophoretic Flow (자기영동을 이용한 자성입자 분리 마이크로 칩 제작 및 성능평가)

  • Go, Jeung-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.392-397
    • /
    • 2007
  • We developed a microfluidic platform able to control the trap and release of magnetic beads used for separation of a specific biomolecules. The magnetic beads can be trapped and released conditionally by controlling the difference between the Stokes force induced by the fluid flow and magnetic force resulting from a permanent magnet. The permanent magnet of CoNiP alloy is electroplated. It is characterized to have the 1369 Oe of coercivity, 1762 Gauss of remanence, and 0.603MGOe of (BH)max. Through the experimental and numerical investigation, the magnetic beads are trapped under the flow velocity of 17 ${\mu}m/s$ and are released perfectly above the velocity of 174 ${\mu}m/s$.

The study of non-destructive analysis of objects excavated at the tomb of Mich’un-ri in Ch’ung-won (유물의 비파괴 조사 연구-청원 미천리 고분 출토 유물을 중심으로)

  • Moon, Whan-Suk;Jo, Nam-Cheol;Kim, Seong-Bae
    • 보존과학연구
    • /
    • s.20
    • /
    • pp.81-90
    • /
    • 1999
  • We performed the non-destructive analysis of objects excavated at the Tomb of Mich’un-ri in Ch’ung-won. We analysed components using of Energy Dispersive X-Ray Micro-Fluorescence Analyzer. Glass bead inlaid with silver was classified as K2O-CaO-SiO2 type of glass. Purity of silver inlaid in the surface was verified above 97%.All small ear-ring were made by rolling up gold broad to a bronze wick. The composition ratio of Au : Ag has significantly higher 87 : 11 than bigear-ring. As a result of composition analysis of a welded part with big ear-ring, it contained the more Cu, Hg contents and the less Au, Ag contents than the surface of big ear-ring.

  • PDF