• 제목/요약/키워드: Micro Abrasive Air Jet

검색결과 5건 처리시간 0.024초

Micro-AAJ를 이용한 엔진 피스톤 링의 마찰 저감 표면 개발 (Development of Engine Piston Ring Surface for Friction Reduction using Micro Abrasive Air Jet)

  • 최수창;노승국;이현화;박종권
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.389-394
    • /
    • 2014
  • In this paper, we report a new manufacturing method for friction reduction using micro-AAJ (abrasive air-jet) machining. AAJ machining employs compressed air to accelerate a jet of high-speed particles to mechanically machine features, including micro-channels and micro-holes, into glass, metal, or polymer substrates for use in microfluidics, MEMS (micro electromechanical systems). And we introduce the micro-AAJ machining system, which consists of a micro-AAJ nozzle and a five-axis positioning system. Various micro-AAJ nozzles can be used, depending on the required surface structure, and three-dimensional machining is possible. We machined samples under six different conditions and describe machining results obtained while using it. We also measured the coefficient of friction of micro-textured surfaces. We report the coefficient of friction of micro-textured surfaces patterned using micro-AAJ machining for engine piston ring.

Photo Polymer 마스크와 미세입자분사가공을 이용한 미세구조물 제작 (Fabrication of Micro Structure Using Photo Polymer Mask and Micro Abrasive Jet Machining)

  • 고태조;박동진;이인환;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1175-1178
    • /
    • 2005
  • Brittle materials, especially single-crystal silicon wafer, are widely used for sensors, IC industry, and MEMS applications. e general machining process of crack easy materials is by chemical agents, but it is hazardous and time consuming. Also, it is difficult to get high aspect ratio micro structure. As an alternative tool, an AJM(Abrasive jet machining) is promising method in terms of high aspect ratio and production cost. In this study, to get more precise detail compared to general AJM, photo polymer mask, SU-8, used in photolithography was applied in AJM. Process parameters such as abrasive diameter, air pressure, nozzle diameter, flow rate of abrasive in AJM and a variety of conditions in spin coating were decided. Finally, micro channel and mixer was fabricated to see the efficiency of the AJM with photo polymer mask.

  • PDF

Taguchi 실험계획법을 이용한 미세입자 분사가공조건 획득에 관한 연구 (Experimental study for the process conditions of abrasive jet machining by Taguchi method)

  • 박동진;이인환;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.379-382
    • /
    • 2004
  • Abrasive jet machining (AJM) has a large number of parameters such as powder flow rate, air pressure, diameter of abrasive, stand off distance, material hardness and fracture toughness, etc. It is not easy matter to control those parameter. To achieve high accurate machining, in this study, Taguchi method was used to select process parameters. The objective of the optimization was to get higher material removal rate (MRR). From the experiments and analysis, some process parameters were found to make efficient machining.

  • PDF

미세입자 분사 가공에서 2차 충돌의 영향 (The Effect of the Second Impact for Abrasive Jet Micromachining)

  • 이재민;박영우;고태조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.488-491
    • /
    • 2005
  • Abrasive Jet Micromachining (AJM) is a process that uses high pressure air with micron-sized particles to erode a substrate. It has been considered as the most economic and appropriate technique to pattern glass surfaces for the flat panel applications. To accelerate the industrialization of AJM, it is necessary to understand the erosion mechanisms thoroughly. Thus, this paper introduces a new method to model the erosion mechanism in AJM. The model is developed by using the concept of the accumulation of the microdeformation caused by each particle. And this paper proposes the model added the effects of second impact. The developed model is used to simulate the erosion profile, and is compared with the model considered only first impact. It can be concluded that the proposed model predicts the erosion profile more accurately.

  • PDF