• 제목/요약/키워드: Micro/Nano structures

검색결과 215건 처리시간 0.028초

Microchips and their Significance in Isolation of Circulating Tumor Cells and Monitoring of Cancers

  • Sahmani, Mehdi;Vatanmakanian, Mousa;Goudarzi, Mehdi;Mobarra, Naser;Azad, Mehdi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.879-894
    • /
    • 2016
  • In micro-fluid systems, fluids are injected into extremely narrow polymer channels in small amounts such as micro-, nano-, or pico-liter scales. These channels themselves are embedded on tiny chips. Various specialized structures in the chips including pumps, valves, and channels allow the chips to accept different types of fluids to be entered the channel and along with flowing through the channels, exert their effects in the framework of different reactions. The chips are generally crystal, silicon, or elastomer in texture. These highly organized structures are equipped with discharging channels through which products as well as wastes of the reactions are secreted out. A particular advantage regarding the use of fluids in micro-scales over macro-scales lies in the fact that these fluids are much better processed in the chips when they applied as micro-scales. When the laboratory is miniaturized as a microchip and solutions are injected on a micro-scale, this combination makes a specialized construction referred to as "lab-on-chip". Taken together, micro-fluids are among the novel technologies which further than declining the costs; enhancing the test repeatability, sensitivity, accuracy, and speed; are emerged as widespread technology in laboratory diagnosis. They can be utilized for monitoring a wide spectrum of biological disorders including different types of cancers. When these microchips are used for cancer monitoring, circulatory tumor cells play a fundamental role.

Smart Material 개념을 이용한 지반구조물 정보화 (Total Instrumentations for Geotechnical Structures Using Smart Materials)

  • 송정락;전기찬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 정보화시공 학술발표회
    • /
    • pp.79-88
    • /
    • 2001
  • 기계, 전기, 전자, 재료, 전산공학 등은 근래에 이르러 혁명적인 발전을 거듭하고 있으며, 이에 따라 새로운 개념의 기기들이 등장하고, 토목계측분야에서도 새로운 방식 및 기기들이 등장하고 있다. 특히 최근의 Smart Material, MEM (Micro-Electro-Machine), Nano- Technology 및 통신기술들은 과거의 공상과학소설에서나 가능하였던 내용들을 실제로 가능케 하였으며, 일부 기술들은 경제성까지 갖춰 상용화되고 있다. 본 고에서는 지반공학적 관점에서 본 이러한 신기술과, 이를 이용한 지반구조물의 정보화에 대하여 살펴보았다.

  • PDF

나노스크래치와 HF 식각을 병용한 보로실리케이트 요/철형 구조체 패턴 제작 기술 (Fabrication Technique of Nano/Micro Pattern with Concave and Convex Structures on the Borosilicate Surface by Using Nanoscratch and HF etching)

  • 윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.24-31
    • /
    • 2004
  • The objective of this work is to suggest a mastless pattern fabrication technique using the combination of machining by Nanoindenter(equation omitted) XP and HF wet etching. Sample line patterns were machined on a borosilicate surface by constant load scratch (CLS) of the Nanoindenter(equation omitted) XP with a Berkovich diamond tip, and they were etched in HF solution to investigate chemical characteristics of the machined borosilicate surface. All morphological data of scratch traces were scanned using atomic force microscope (AFM).

압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가 (Evaluation of the Residual Stress with respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor)

  • 심재준;한근조;김태형;한동섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1537-1540
    • /
    • 2003
  • MEMS technology with micro scale is complete system utilized as the sensor. micro electro device. The metallization of MEMS is very important to transfer the power operating the sensor and signal induced from sensor part. But in the MEMS structures local stress concentration and deformation is often happened by geometrical shape and different constraint on the metallization. Therefore. this paper studies the effect of supporting type and thickness ratio about thin film thickness of the substrate thickness for the residual stress variation caused by thermal load in the multi-layer thin film. Specimens were made from materials such as Al, Au and Cu and uniform thermal load was applied, repeatedly. The residual stress was measured by FEA and nano-indentation using AFM. Generally, the specimen made of Al induced the large residual stress and the 1st layer made of Al reduced the residual stress about half percent than 2nd layer. Specimen made of Cu and Au being the lower thermal expansion coefficient induce the minimum residual stress. Similarly the lowest indentation length was measured in the Au_Cu specimen by nano-indentation.

  • PDF

Bioinspired Nanoengineering of Multifunctional Superhydrophobic Surfaces

  • Choi, Chang-Hwan
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.102-133
    • /
    • 2015
  • Nature, such as plants, insects, and marine animals, uses micro/nano-textured surfaces in their components (e.g., leaves, wings, eyes, legs, and skins) for multiple purposes, such as water-repellency, anti-adhesiveness, and self-cleanness. Such multifunctional surface properties are attributed to three-dimensional surface structures with modulated surface wettability. Especially, hydrophobic surface structures create a composite interface with liquid by retaining air between the structures, minimizing the contact area with liquid. Such non-wetting surface property, so-called superhydrophobicity, can offer numerous application potentials, such as hydrodynamic drag reduction, anti-biofouling, anti-corrosion, anti-fogging, anti-frosting, and anti-icing. Over the last couple of decades, we have witnessed a significant advancement in the understanding of surface superhydrophobicity as well as the design, fabrication, and applications of superhydrophobic coatings/surfaces/materials. In this talk, the designs, fabrications, and applications of superhydrophobic surfaces for multifunctionalities will be presented, including hydrodynamic friction reduction, anti-biofouling, anti-corrosion, and anti-icing.

  • PDF

Novel 3D nanofabrication technique and its applications

  • 전석우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.15.1-15.1
    • /
    • 2009
  • Nano transfer printing and micro contact printing is well known printing method based on soft lithography which uses conformal soft elastomer with designed surface relief structures. Here I introduce another class of novel 3D nanofabrication technique by using the same elastomer but in a different manner. The approach, which we refer to as proximity field nanopatterning, uses the surface-reliefed elastomers as phase masks to pattern thick layers of transparent, photosensitive materials. Aspects of the optics, the materials, and the physical chemistry associated with this method are outlined. A range of 3D structures illustrate its capabilities, and several application examples demonstrate possible areas of use in technologies ranging from microfluidics to photonic materials to density gradient structures for chemical release and high-energy density science.

  • PDF

Experimental and numerical study on the mechanical properties of reinforced polyester composites

  • Ibrahim Alameri;Meral Oltulu
    • Advances in materials Research
    • /
    • 제12권3호
    • /
    • pp.227-242
    • /
    • 2023
  • Polyester composites play a vital role in civil engineering applications, especially in bridge and car park structures. Therefore, the addition of waste silica-based fillers will both improve the mechanical and durability performance of composites and produce an environmentally friendly material. In this study, the mechanical performance of polyester composites was investigated experimentally and numerically by adding micro and nano-sized silica-based fillers, marble powder, silica fume and nano-silica. 24 cubes for the compression test and 18 prisms for the flexural test were produced in six different groups containing 30% marble powder, 5% silica fume and 1% nano-silica by weight. SEM/EDS testing was used to investigate the distribution of filler particles in the matrix. Experimentally collected results were used to validate tests in the Abaqus software. Additionally, the Extended Finite Element Method (XFEM) was used to estimate the fracture process for the flexural test. The results show that the added silica fume, marble powder and nano silica improves the compressive strength of polyester composites by 32-38% and the flexural tensile strength by 10-60% compared to pure polyester composite. The numerically obtained results matched well with the experimental data, demonstrating the accuracy and feasibility of the calibrated finite element model.

다중조사 복셀 매트릭스 스캐닝법을 이용한 이광자 중합에 의한 마이크로 3차원 곡면형상 제작 (Fabrication of Three-Dimensional Curved Microstructures by Two-Photon Polymerization Employing Multi-Exposure Voxel Matrix Scanning Method)

  • 임태우;박상후;양동열;공홍진;이광섭
    • 폴리머
    • /
    • 제29권4호
    • /
    • pp.418-421
    • /
    • 2005
  • 본 연구에서는 나노/마이크로 소자 및 MEMS 제작에 활용가능하고 또한 수십 마이크로미터 크기의 3차원 곡면을 가진 형상을 제작하기 유리한 이광자 광중합을 이용한 다중조사 복셀 매트릭스 스캐닝법(multi-exposure voxel matrix scanning method)에 의한 나노 복화공정을 개발하였다. 이 공정을 통하여는 높이에 따라 14가지의 색을 가진 등고선으로 표현된 3차원 자유곡면 형상을 적층방식이 아닌 단일 층으로 3차원으로 제작할 수 있다. 여기서 수광각도가 1.25인 집광렌즈를 사용하여 레이저의 조사시간에 따라 1.2 um에서 6.4 um까지 변하는 복셀의 높이 차이를 이용하여 3차원 곡면 제작이 가능하다. 본 연구의 유용성을 검토하기 위하여 몇 가지 3차원 곡면형상을 초미세 입체 패터닝 공정에서 사용하는 일반적인 적층방식을 사용하지 않고 단층으로 제작하여 시간을 단축하였다.

Micro-patterning for Biomimetic Functionalization of Surface

  • 전덕진;이준영;여종석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.272-273
    • /
    • 2013
  • Some living thingsuse micro- or nano- structures for living in nature. Scientists and engineers made efforts to mimic them, and they succeeded in making new types of applications. They used 'Namib desert beetle' to self-filling device by moisture harvesting and 'lotus leaf' to self-cleaning device by water repelling. 'Namib desert beetle' and lotus leaf have micro-patterns on their surface, which consists of hydrophobic or hydrophilic materials [1]. Moreover, micro-patterns on the surface make self-filling or self-cleaning property enhanced because of the surface roughness. Surface roughness enhances wettability [2]. Micro-pattern is a significant factor to make the surface be functional, so we want to make new types of functional surface by micro-patterning. In this work,we make several functional micro-patterns (radial, line, and dot arrays) using maskless lithography and analyze the characteristics of each micro-pattern. In order to analyze and understand surface characteristics, micro-patterns with varying sizes are investigated. All experiments are proceeded on mr-DWL5 photo resists coated on silicon wafers in same condition. All the experiments have demonstrated good performances about hydrophobic or hydrophilic property corresponding to their material and structural combinations. In radial micro-pattern, although the surface is flat, water drops on hydrophilic radial pattern can be convergent to a middle point and water drops on hydrophobic radial pattern can be divergent from the middle point. In line array micro-pattern, water drops can roll off along only one direction in parallel with the line arrays. Such phenomena might be mainly caused by the local change of surface roughness. From these results, controlling the movement and direction of water drops is made feasible without introducing a slope, which can potentially be used for new types of applications.

  • PDF

나노임프린트를 이용한 바이오칩용 나노 패턴 제작 (Fabrication of Nanopatterns for Biochip by Nanoimprint Lithography)

  • 최호길;김순중;오병근;최정우
    • KSBB Journal
    • /
    • 제22권6호
    • /
    • pp.433-437
    • /
    • 2007
  • 본 연구에서는 나노임프린트 리소그래피를 이용하여 500 nm line, 600 nm pore, $1{\mu}m$ pore, $2.5{\mu}m$ pore의 마이크로 수준에서 나노 수준에 이르는 다양한 크기와 모양의 nanopore 형태 패턴을 제작하였다. Thermal imprint 방식과 달리 상온, 저압에서 임프린팅이 가능하며 사용되는 스탬프의 수명을 늘리고 보다 미세하고 복잡한 형태의 패턴을 제작할 수 있는 UV-assisted imprint 방식을 사용하였다. E-beam lithography로 패턴을 각인한 quartz소재의 스탬프를 사용하였으며 스탬프의 재질이 투명하여 UV 조사시 UV curable resin이 경화될 수 있도록 하였다. 또한 스탬프의 표면을 (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trichlorosilane의 monolayer 층으로 미리 코팅하여 임프린트 후 스탬프와 기판과의 releasing을 쉽게함과 동시에 패턴의 일부가 스탬프에 묻어 나와 전사된 패턴에 defect가 없도록 하였다. 또한, gold를 미리 증착하여 임프린팅함으로써 lift-off 시에 필요한 hi-layer 층이 필요 없게 되어 산소 플라즈마를 이용한 에칭이 더욱 쉽고 lift-off 공정이 생략될 수 있도록 하였다. 나노임프린트 공정에 있어 가장 큰 문제점은 잔여층의 생성이며 이러한 잔여층을 제거하고자 산소 플라즈마 에칭을 하였다. 에칭공정을 통해 gold의 표면이 완전히 드러났으며 산소 플라즈마를 통해 gold의 표면이 친수성으로 바뀌어 추후 단백질 고정화를 더욱 쉽게 하였다. 그리하여 나노임프린트 기술을 이용해 나노크기의 바이오소자 제작을 가능하게 하였다.