• Title/Summary/Keyword: Michelson Interferometer

Search Result 84, Processing Time 0.025 seconds

Evaluating Interfacial Adhesion Properties of Pt/Ti Thin-Film by Using Acousto-Optic Technique (Acousto-Optic 기법을 이용한 Pt/Ti 박막 계면의 접합특성 평가)

  • Park, Hae-Sung;Didie, David;Yoshida, Sanichiro;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.188-194
    • /
    • 2016
  • We propose an acousto-optic technique for the nondestructive evaluation of adhesion properties of a Pt/Ti thin-film interface. Since there are some problems encountered when using prevailing techniques to nondestructively evaluate the interfacial properties of micro/nano-scale thin-films, we applied an interferometer that combined the acoustic and optical methods. This technique is based on the Michelson interferometer but the resultant surface of the thin film specimen makes interference instead of the mirror when the interface is excited from the acoustic transducer at the driving frequency. The thin film shows resonance-like behavior at a certain frequency range, resulting in a low-contrast fringe pattern. Therefore, we represented quantitatively the change in fringe pattern as a frequency spectrum and discovered the possibility that the interfacial adhesion properties of a thin film can be evaluated using the newly proposed technique.

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hee-K.;Grigoropoulos, Costas P.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.348-353
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the micro scale regime is essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing applications, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse (${\lambda}=248nm,\;FWHM=24\;ns$) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of $0.1{\mu}m\;and\;1\;m/s$, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

  • PDF

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hui-Gwon;Grigoropoulos, Costas-P.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1140-1147
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the microscale regime are essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing application, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse(λ=248nm, FWHM=24ns) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of 0.1㎛ and 1m/s, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF

Profile measurement by Using Laser Interferometer (레이저 간섭계를 이용한 형상 측정)

  • 김도형;임노빈;김현수;김진태
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.216-217
    • /
    • 2003
  • 컴퓨터 기술, 영상 처리기술, 기계장치의 자동화 발전에 따라 레이저를 이용한 형상 측정 기술 개발은 반도체 표면 측정 등에 응용되어지는 매우 중요한 분야를 차지하고 있다. 레이저를 이용한 정밀 표면 측정 기술은 레이저 파장의 1/4에 해당하는 높이까지 CCD 카메라와 연계시켜 측정할 수가 있다. 레이저 간섭계는 Michelson, Mirau, Linnik 등에 의해 개발된 간섭계가 주로 이용되고 있다. 본 논문에서는 4-bucket 알고리즘을 사용하기 위하여 영상을 $\theta$$\pi$/2씩 위상 이동시켜 다음과 같은 4개의 간섭 무의 강도 영상 정보를 획득하여 Borland C++ 프로그램을 이용 위상을 계산하였다. (중략)

  • PDF

Development of electronic shearography for vibration analysis (진동해석을 위한 전자전단간섭계의 개발)

  • Kang, Young-June;Kwon, Yong-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2047-2054
    • /
    • 1997
  • This paper describes a measuring method of vibration mode shapes by the Electronic Shearography. This method called the speckle interferometer has many merits in practical use, such as low sensitivity to environmental noise, low limit of coherent-length and simple optical configuration. In this study, we developed Michelson-type shearing interferometer provided with a phase stepping mirror and with a bias modulation mirror to quantify the vibration gradient fields. Results of application to a simple cantilever plate show that the vibration amplitude fields obtained are in good agreement with those of the electronic speckle pattern interferometry (ESPI).

DEVELOPMENT OF THE ELECTRONIC SHEAROGRAPHY FOR MEASURING THE VIBR24T1ON MODE SHAPES (동 모우드 형태 계측을 위한 전자 전단간섭계의 개발)

  • 최장섭;강영준;백성훈;김철중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.432-438
    • /
    • 1994
  • This paper describes the measuring method of vibration mode shapes by the Electronic Shearography. Shearographic interferometer has many merits in practical use, that is low sensitive to the environmental noisy, liw limit of the coherent-length and simple optical configuration etc.. In this study, we developed Michelson-type shearing interferometer provided with a phase stepping mirror and with a bias modulation mirror to quantify the vibration gradient fields. As a results of application to a simple cantilever plate vibration amplitude fields were obtained by the proper integration technique, and their exprimental results were in good agreement with those of the ESPI experiment.

  • PDF

Development of Micro Tensile Tester for High Functional Materials (고기능 소재용 마이크로 인장시험기 개발)

  • 최현석;한창수;최태훈;이낙규;임성주;박훈재;김승수;나경환
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.561-568
    • /
    • 2002
  • Micro tensile test is the most direct and convenient method to measure material properties such as Young's modulus and fracture strength. It, however, needs more accurate measurement system, mote stable and repetitive alignment and more sensitive gripping than conventional tensile test. Many researchers have put their effort on overcoming these difficulties for tile development of micro tensile tester, fabricating micro specimens of functional materials and measuring their properties. This paper will review the related vigorous researches over the world in the recent decade and explain how to apply them to a design of the fester which is under our own development.

Detection of White Light Interference Peak Position utilizing Analog Signal Processing (아날로그 신호처리를 이용한 백색광 간섭 피크의 검출)

  • Yeh, Yun-Hae;Lee, Jong-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.319-325
    • /
    • 2005
  • A signal processing method for white light interferometry (WLI), which performs a series of analog signal processing steps to locate the central interference fringe position at high speed: is developed and applied to a WLI temperature sensor system. We found that the new method has random walk of $0.019^{\circ}C/\sqrt{Hz}$ with good linearity. However, the temperature change in the path-matching interferometer results in drift of the measured sensor output. The temperature dependence of drift in the WLI temperature sensor system, was calculated to be $1.42{\mu}m/^{\circ}C$. It is also found that the relationship between the peak spacing in the interferogram and the spacing measured by the method can be nonlinear when the fringe spacing is comparable to the coherence length of the source.