• Title/Summary/Keyword: Michael Addition

Search Result 156, Processing Time 0.031 seconds

Synthesis of Novel Ester Quaternary Ammonium Cationic Surfactants via Michael Addition Reaction (Michael Addition Reaction을 이용한 신규 Ester Quaternary Ammonium Salt 양이온 계면활성제의 합성)

  • Kang, Eun-kyung;Jung, Seon Hwa;Jung, GaYoung;Lee, Byung Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.142-151
    • /
    • 2017
  • Cationic surfactants have a bactericidal effect and the study for effective development of them became important parts in the industry. There have been increasing researches that focus on the development of products having not only outstanding features but also safety and biodegradability. In this work, novel ester-type cationic surfactants were obtained via Michael addition reaction. Intermediates were quantitatively prepared by the Michael addition reaction between alkyl acrylate and amine compounds under mild conditions without solvent and catalyst. The intermediates were quaternized with dimethyl sulfate. HQ21 with two hydrophobic groups and a hydrophilic group and HQ22 with two hydrophobic groups and two hydrophilic groups were obtained. The structures of the products were characterized by 1H-NMR, HR-MS and FT-IR and biodegradability of the products were tested.

Organocatalytic Asymmetric Michael Addition of 1,3-Cyclohexanedione to Benzylidenemalonitriles

  • Suh, Chang Won;Kim, Dae Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.98-102
    • /
    • 2014
  • The organocatalytic enantioselective Michael addition reaction promoted by chiral binaphthyl-modified squaramide catalyst have been developed, allowing facile synthesis of the corresponding chiral 2-amino-4H-chromenes derivatives with excellent enantioselectivity (up to 99% ee). The method reported represents a practical entry for the preparation of chiral 2-amino-4H-chromenes derivatives.

Organocatalytic Enantioselective Michael Addition of α-Nitroacetate to α,β-Unsaturated Enones: A Route to Chiral γ-Nitro Ketones and δ-Keto Esters

  • Moon, Hyoung-Wook;Kim, Dae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.291-295
    • /
    • 2011
  • The catalytic enantioselective conjugate addition reaction of $\alpha$-nitroacetate to $\alpha,\beta$-unsaturated enones promoted by chiral bifunctional organocatalysts is described. The treatment of $\alpha$-nitroacetate to $\alpha,\beta$-unsaturated enones afforded the corresponding Michael adducts with high enantioselectivity. The conjugate addition adducts are easily converted to chiral $\gamma$-nitro ketones and $\delta$-keto esters.

Spectroscopic Analysis on the Michael Addition Reaction between Secondary Amino Group Containing Silica Nanoparticles with (Meth)acrylate Monomers (2차 아미노기를 갖는 실리카 나노입자와 (메타)아크릴레이트 단량체와의 마이클 부가반응에 대한 분광학적 분석)

  • Jeon, Ha-Na;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.668-676
    • /
    • 2012
  • In this study, we modified silica nanoparticles with bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to introduce secondary amino groups on the silica surface. After modification of silica, we investigated effects of different types of (meth)acrylate group containing monomers on the Michael addition reaction to introduce reactive (meth)acrylate groups on the BTMA modified silica surface. We used two kinds of (meth)acrylate monomers, trimethylolpropane ethoxylate triacrylate (TMPET) which has three identical acrylate groups, and 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) which has one acrylate and one methacrylate group. We used fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to understand reactions between NH groups on the silica surface with (meth)acrylate groups of TMPET and AHM monomers. We found almost complete Michael addition reaction between all three acrylate groups of TMPET with NH groups on the BTMA modified silica. But, for the AHM treatment of BTMA modified silica, we found Michael addition reaction occurred only between acrylate groups of AHM and NH groups of silica surface, not between methacrylate groups of AHM and NH groups of BTMA modified silica surface.

Lewis Acid-Catalyzed Reactions of Anthrone: Preference for Cycloaddition Reaction over Conjugate Addition Depending on the Functionality of α,β-Unsaturated Carbonyl Compounds

  • Baik, Woon-Phil;Yoon, Cheol-Hoon;Koo, Sang-Ho;Kim, Ha-Kwon;Kim, Ji-Han;Kim, Jeong-Ryul;Hong, Soo-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.491-500
    • /
    • 2004
  • The Lewis acid-catalyzed reactions of anthrone with a variety of ethylenic substrates under various conditions have been studied. It has been observed that depending on kinds of ethylenic substrates and catalysts, products were varied. In particular, the $ZnCl_2$-catalyzed reaction of anthrone with ${\alpha},{\beta}$ -unsaturated ester gave bridged compounds 3 (Diels-Alder adduct type) and mono-Michael adduct 4 exclusively, while the base-catalyzed reaction gave 10,10-bis-Michael adduct as a major product independent of the amount of ethylenic substrate and base. Bridged compounds 3 were easily converted to the corresponding mono-Michael adduct 4 by a catalytic amount of base. Further Michael reaction of mono-Michael adducts with different ethylenic substrates in the presence of a catalytic amount of alkoxide gave unsymmetrical 10,10-bis Michael adducts in good or moderate yields.

Synthesis and Pharmacological Screening for Muscle Relaxant, Anticonvulsant, and Sedative Activities of Certain Organic Compounds Produced by Michael Addition

  • Said , Makarem M.;Ahmed, Amany A. E.;El-Alfy, Abir T.
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1194-1201
    • /
    • 2004
  • Michael addition of certain nucleophiles on ${\alpha}$ , ${\beta}$-unsaturated ketones 1 led to the formation of adducts 2-7 as well as the reaction of arylidene derivatives with secondary amines afforded the amino compounds 9 and 11. Also, dialkylmalonates were treated with ${\alpha}$-cyano cinnamide to afford 13. On the other hand, double Michael cycloaddition of ethylcyanoacetate or tetrachlorophthalic anhydride to the suitable divinylketone were synthesized to produce 15-17. Selected compounds (13 and 6) were screened for muscle relaxant, anticonvulsant, and sedative activities using established pharmacological models. Their activities were compared with that of phenobarbital sodium taken as standard. Compound 6 was the most potent muscle relaxant while compounds 13a and 13c offered the highest anticonvulsant activity. Meanwhile compound 13c showed the highest potentiation of phenobarbital induced sleep in mice.

Optimum Conditions for Introducing Free Radical Polymerizable Methacrylate Groups on the MWCNT Surface by Michael Addition Reaction (MWCNT 표면에 Michael 부가 반응으로 자유 라디칼 중합 가능한 Methacrylate기 도입에 대한 최적 개질 조건)

  • Kim, Sunghoon;Park, Seonghwan;Kwon, Jaebeom;Ha, KiRyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.83-90
    • /
    • 2015
  • In this study, we investigated optimum conditions for the introduction of a lot of free radical polymerizable methacrylate groups on the multi-walled carbon nanotube (MWCNT) surface. Carboxyl groups were introduced first on MWCNT surfaces by treating with a mixture of sulfuric acid and nitric acid with ultrasonic bath for 2 hours, and oxidized MWCNTs were reacted further with thionyl chloride followed by triethylenetetramine (TETA) to introduce amino groups on the oxidized MWCNT surface, to make MWCNT-$NH_2$. To introduce free radical polymerizable methacrylate groups on the MWCNT-$NH_2$, MWCNT-$NH_2$ was reacted with 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) by Michael addition reaction. We investigated progress of modification reactions for MWCNT by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and elemental analysis (EA). We found maximum degree of Michael addition reactions between AHM and TETA grafted on MWCNT-$NH_2$ for 10:1 mol ratio and 8 hour reaction time in our reaction conditions.