• 제목/요약/키워드: Micellar Enhanced Ultrafiltration

검색결과 24건 처리시간 0.017초

Simultaneous removal of dissolved TCE and chromate using micellar-enhanced ultrafiltration

  • 이율리아;김호정;백기태;김보경;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.413-416
    • /
    • 2003
  • Micellar enhanced ultrafiltration(MEUF) is a surfactant-based separtaion technique which can remove dissolved organics or multivalent ions from water. In this study, trichloroethylene(TCE) and chromate were simultaneouly removed using MEUF and cetyltrimethylammoniun chloride (CPC) was used as a surfactant. The removal efficiency of chromate was 99% and that of TCE was more than 80%. The presence of TCE or chromate did not affect removal efficiency of each pollutants because the predominat mechanism of TCE and chromate are different.

  • PDF

Simultaneous removal of nitrate and phosphate by micellar-enhanced ultrafiltration(MEUF) using PENTANOX 4X

  • 양지원;김보경;백기태;김호정
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.447-450
    • /
    • 2003
  • The feasibility of PENTANOX 4X for the simultaneous removal of nitrate and phosphate was investigated using micellar-enhanced ultrafiltration. Because PENTANOX 4X has cationic property at low pH, anionic contaminants can be bound to PENTANOX 4X micelle by electrostatic interaction. At pH 3, 90% of nitrate and 72% of phosphate were removed by 27 mM of PENTANOX 4X, which were equivalent to 20 mM of CPC. PENTANOX 4X of > 80 % was rejected by ultrafiltration membrane and did not make any counter-ion such as chloride for CPC which might cause second-pollution.

  • PDF

MEUF에 의한 질산성 질소 제거에 관한 연구 (Characteristics of Nitrate Removal Using Micellar-enhanced Ultrafiltration)

  • 백기태;이현호;김보경;김호정;양지원
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권2호
    • /
    • pp.36-43
    • /
    • 2003
  • 질산성 질소 제거를 위해 미셀 형성을 이용한 한외여과(MEUF)공정의 타당성을 양이온성 계면활성제인 octadecylamine acetate(ODA)와 cetylpyrinidium chloride(CPC)를 사용하여 조사하였다. 3 몰비의 계면활성제를 가지고 최소 80%의 질산성 질소를 제거할 수 있었으며, 10 몰비의 계면활성제로는 98% 이상의 제거율을 얻을 수 있었다. ODA가 CPC 보다 높은 질산성 질소와 계면활성제 제거율을 보였으며, 이는 계면활성제 구조상 ODA의 머리부분이 CPC의 머리부분보다 질산성 질소의 접근이 용이하기 때문이다. MEUF공정은 질산성 질소를 효과적으로 제거할 수 있으며, CPC보다 ODA가 질산성 질소를 제거하기 위해 더 바람직한 계면활성제이다.

Micellar Enhanced Ultrafiltration (MEUF) and Activated Carbon Fiber (ACF) Hybrid Processes for the Removal of Cadmium from an Aqueous Solution

  • Rafique, Rahman Faizur;Lee, Seunghwan
    • Korean Chemical Engineering Research
    • /
    • 제52권6호
    • /
    • pp.775-780
    • /
    • 2014
  • Micellar enhanced ultrafiltration (MEUF) was used to remove cadmium from an aqueous solution using sodium dodecyl sulfate (SDS) as a surfactant. Operational parameters such as initial permeate flux, retentate pressure, initial cadmium concentration, pH solution, molecular weight cut-off (MWCO), and molar ratio of cadmium to SDS were investigated. Removal efficiency of cadmium from an aqueous solution increased with an increase of retentate pressure, pH solution and molar ratio of cadmium to SDS, and decreased with an increase of initial permeate flux. Higher removal efficiency of cadmium from the aqueous solution was achieved using lower MWCO (smaller membrane pore size). Under optimized experimental condition, cadmium removal efficiency reached 74.6 % within an hour. Using MEUF-ACF hybrid process the removal efficiency of both cadmium and SDS was found to be over 90%.

Chromate Removal from Wastewater using Micellar Enhanced Ultrafiltration and Activated Carbon Fibre Processes; Validation of Experiment with Mathematical Equations

  • Bade, Rabindra;Lee, Seung-Hwan
    • Environmental Engineering Research
    • /
    • 제13권2호
    • /
    • pp.98-104
    • /
    • 2008
  • In this study, chromate and cetylperidinium chloride (CPC) removal from artificial wastewater was monitored by using micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) adsorption hybrid processes. For the efficient chromate removal, molar concentration of the CPC should be five times that of chromate and it should be at least one critical micelle concentration (CMC). The MEUF was found to be effective in the chromate removal while ACF in the CPC adsorption to produce chromate and CPC free effluents. The chromate and CPC removal was 99.8% from MEUF-ACF process. Effluent chromate concentration was exponentially correlated with molar ratio of CPC to chromate and pH.

Comparison of different surfactant system for simultaneous removal of nitrate and phosphate using micellar-enhanced ultrafiltration

  • 김보경;백기태;김호정;이율리아;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.417-421
    • /
    • 2003
  • Three kinds of surfactant systems - cationic surfactant (system 1), combinition of two cationic surfactants (system 2), and combination of two cationic surfactant and non-ionic surfactant (system 3) - for the simultaneous removal of nitrate and phosphate by micellar-enhanced ultrafiltration (MEUF) were investigated. The highest removal efficiencies of nitrate and phosphate were observed in system 2, which were 90 % of nitrate and 72 % of phosphate. The COD of permeate in system 3 was the lowest, because the added non-ionic surfactant made critical micelle concentration (CMC) lower than that of other surfactant systems. In all systems, the flux decline was similar.

  • PDF

Surfactant recycling using micellar enhanced ultrafiltration

  • 양중석;백기태;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.177-180
    • /
    • 2004
  • 계면활성제를 이용한 오염된 토양을 복원하는데 있어 계면활성제의 회수하는 방법의 하나로 한외여과 방식의 타당성을 검토하였다. 계면활성제의 종류, 전해질과 첨가제로서의 알코올 및 휴믹 물질과 점토질에 의한 상대 플럭스의 변화와 투과액의 계면활성제의 농도 변화를 살펴보았다. 계면활성제의 경우 임계미셀농도 낮을수록 투과액의 농도가 낮았으며, 기타 첨가물은 농도에 비례하여 상대 플럭스가 감소하는 경향을 보였다.

  • PDF

Remediation Groundwater contaminated with chromate using Micellar - enhanced ultrafiltration(MEUF)

  • 양지원;백기태;김보경
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.306-309
    • /
    • 2002
  • Micellar-enhanced ultrafiltration was investigated to remediate groundwater contaminated with chromate using a cationic surfactant, cetylpyridinium chloride (CPC). Removal of chromate was expressed as a function of molar ratio of CPC to chromate. With 10 molar ratio of CPC, removal efficiency of chromate was reached to over 99%. The rejection of CPC was 90% at 1 molar ratio, gradually increased as the molar ratio increased.

  • PDF

미셀 한외여과(MEUF)를 이용한 질산성 질소와 인산의 동시제거 시 휴믹산의 영향 (Effect of Humic Substances on the Simultaneous Removal of Nitrate and Phosphate in a Micellar-Enhanced Ultrafiltration (MEUF))

  • 김보경;백기태;김호정;양지원
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권3호
    • /
    • pp.30-36
    • /
    • 2003
  • 본 연구에서는 미셀 한외여과(Micellar-enhanced ultrafiltration, MEUF)공정으로 질산성 질소와 인산을 동시에 제거할 때 휴믹산이 공정에 미치는 영향을 살펴보았다. 계면활성제/오염물의 몰 비가 1인 경우, 질산성 질소는 미셀 표면에 휴믹산과 경쟁적으로 결합을 하기 때문에 그 제거율이 50%로 감소하지만, 몰 비 3 이상의 계면활성제를 첨가하였을 때에는 80% 이상의 제거율을 유지하였다. 반면 인산의 경우에는, 몰 비 1 이상의 CPC 농도에서 질산성 질소와는 달리 휴믹산이 존재하지 않는 경우와 비슷한 수준인 80% 이상의 제거율을 보였으며, 이때 CPC와 휴믹산의 제거율은 거의 99% 이상 이었다. 또한 100 ppm농도의 휴믹산은 MEUF공정에서 플럭스 감소에 영향을 미치지 않고 오히려 조금 증가시켰으며, 이는 막에 흡착한 휴믹산이 막의 친수성을 증가시켜 투과율을 높이기 때문인 것으로 판단된다. 이를 통해 휴믹산은 질산성 질소 및 인산을 동시 제거하는 MEUF 공정에서 제거효율을 저하시키지 않음을 확인하였다.

Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: A review

  • Yaqub, Muhammad;Lee, Seung Hwan
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.363-375
    • /
    • 2019
  • Micellar-enhanced ultrafiltration (MEUF) is a surfactant-based separation technique and has been investigated for the removal of heavy metals from wastewater. The performance of heavy metals removal from wastewater through MEUF relies on membrane characteristics, surfactant properties, various operational parameters including operating pressure, surfactant and heavy metal concentration, pH of the solution, temperature, and presence of dissolved solutes and salts. This study presents an overview of literature related to MEUF with respect to the all significant parameters including membranes, surfactants, operating conditions and MEUF hybrid processes. Moreover, this study illustrates that MEUF is an adaptable technique in various applications. Nowadays water contamination caused by heavy metals has become a serious concern around the globe. MEUF is a significant separation technique in wastewater treatment that should be acknowledged, for the reason that removal of heavy metals contamination even at lower concentrations becomes achievable, which is evidently made known in the presented review. Hybrid processes presented the better results as compared to MEUF. Future studies are required to continue the experimental work with various combinations of surfactant and heavy metals, and to investigate for the treatment of concentrated solutions, as well as for real industrial wastewater.