• 제목/요약/키워드: Mice, knockout

검색결과 215건 처리시간 0.027초

Anti-aging effects of Korean Red Ginseng (KRG) in differentiated embryo chondrocyte (DEC) knockout mice

  • Nam, Youn Hee;Jeong, Seo Yule;Kim, Yun Hee;Rodriguez, Isabel;Nuankaew, Wanlapa;Bhawal, Ujjal K.;Hong, Bin Na;Kang, Tong Ho
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.183-190
    • /
    • 2021
  • Background: The circadian rhythm is the internal clock that controls sleep-wake cycles, metabolism, cognition, and several processes in the body, and its disruption has been associated with aging. The differentiated embryo chondrocyte (Dec) gene is related to circadian rhythm. To our knowledge, there are no reports of the relationship between dec gene expression and KRG effect. Therefore, we treated Dec gene knockout (KO) aging mice with KRG to study anti-aging related effects and possible mechanisms. Methods: We evaluated KRG and expression of Dec genes in an ototoxicity model. Dec genes expression in livers of aging mice was further analyzed. Then, we assessed the effects of DEC KO on hearing function in mice by ABR. Finally, we performed DNA microarray to identify KRG-related gene expression changes in mouse liver and assessed the results using KEGG analysis. Results: KRG decreased the expression of Dec genes in ototoxicity model, which may contribute to its anti-aging efficacy. Moreover, KRG suppressed Dec genes expression in liver of wild type indicating inhibition of senescence. ABR test indicated that KRG improved auditory function in aging mouse, demonstrating KRG efficacy on aging related diseases. Conclusion: Finally, in KEGG analysis of 238 genes that were activated and 158 that were inhibited by KRG in DEC KO mice, activated genes were involved in proliferation signaling, mineral absorption, and PPAR signaling whereas the inhibited genes were involved in arachidonic acid metabolism and peroxisomes. Our data indicate that inhibition of senescence-related Dec genes may explain the anti-aging efficacy of KRG.

Topical Irradiation of UVA to The Eye Induces Immunosuppression in The Mice via Nitric-Oxise Dependent Neuronal Pathways

  • Hiramoto, Keiichi;Yanagihara, Nobuyo;Sato, Eisuke F.;Inoue, Masayasu
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.470-471
    • /
    • 2002
  • It has been well documented that dermal irradiation by ultraviolet A (UVA) locally decreases the number of Langerhans cells and suppresses contact hypersensitivity of the skin. We found that topical irradiation of UVA to the eye systemically decreased the number of Langerhans cells (LC) in the dorsalskin and lymph nodes and elicited lymphocyte apoptosis in the latter tissues but not in the thymus. Optic nerve resection, but not ciliary ganglionectomy, eliminated the UVA-induced decrease in dermal Langerhans cells by a mechanism that was partially inhibited by hypophysectomy. The immunosuppressive effect of UVA was not observed in knockout mice lacking inducible-type of nitric oxide synthase (iNOS). These results suggested that topical irradiation of UVA to the eye induced immunosuppression via NO-dependet neuronal pathways.

  • PDF

New role of E3 ubiquitin ligase in the regulation of necroptosis

  • Seo, Jinho;Lee, Eun-Woo;Song, Jaewhan
    • BMB Reports
    • /
    • 제49권5호
    • /
    • pp.247-248
    • /
    • 2016
  • Necroptosis is a well-known form of caspase-independent cell death. Necroptosis can be triggered by various extrinsic stimuli, including death ligands in the presence of receptorinteracting protein kinase 3 (RIPK3), a key mediator of necroptosis induction. Our recent studies have revealed that C-terminus HSC-70 interacting protein (CHIP), an E3 ligase, can function as an inhibitor of necroptosis. CHIP−/− mouse embryonic fibroblast showed higher sensitivity to necrotic stimuli than wild-type mouse embryonic fibroblast cells. Deleterious effects of CHIP knockout MEFs were retrieved by RIPK3 depletion. We found that CHIP negatively regulated RIPK3 and RIPK1 by ubiquitylation- and lysosome- dependent degradation. In addition, CHIP−/− mice showed postnatal lethality with intestinal defects that could be rescued by crossing with RIPK3−/− mice. These results suggest that CHIP is a negative regulator of RIPK1 and RIPK3, thus inhibiting necroptosis.

Suppression of Azoxymethane-Induced Colorectal Tumors in iNOS -/- C57BL/6J Mice.

  • Ahn, Byeong-Woo;Han, Beon-Seok;Jo, Hyun-Ye;Kang, Mi-Seung;Choi, Mi-Na;Kim, Dae-Joong;Nam, Sang-Yoong;Lee, Beom-Jun;Kim, Yun-Bae;Jang, Dong-Deuk
    • 한국수의병리학회:학술대회논문집
    • /
    • 한국수의병리학회 2005년도 Proceedings of The 2nd Asian Society of Veterinary Pathology Symposium(Vol.2) and 2005 Annual Meeting of The Korean Society of Veterinary Pathology(Vol.9)
    • /
    • pp.81-82
    • /
    • 2005
  • PDF

Growth signaling and longevity in mouse models

  • Kim, Seung-Soo;Lee, Cheol-Koo
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.70-85
    • /
    • 2019
  • Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns.

Deficiency of Formyl Peptide Receptor 2 Retards Hair Regeneration by Modulating the Activation of Hair Follicle Stem Cells and Dermal Papilla Cells in Mice

  • Han, Jinsol;Lee, Chanbin;Jung, Youngmi
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권4호
    • /
    • pp.279-291
    • /
    • 2021
  • Hair loss is one of the most common chronic diseases, with a detrimental effect on a patient's psychosocial life. Hair loss results from damage to the hair follicle (HF) and/or hair regeneration cycle. Various damaging factors, such as hereditary, inflammation, and aging, impair hair regeneration by inhibiting the activation of hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs). Formyl peptide receptor 2 (FPR2) regulates the inflammatory response and the activity of various types of stem cells, and has recently been reported to have a protective effect on hair loss. Given that stem cell activity is the driving force for hair regeneration, we hypothesized that FPR2 influences hair regeneration by mediating HFSC activity. To prove this hypothesis, we investigated the role of FPR2 in hair regeneration using Fpr2 knockout (KO) mice. Fpr2 KO mice were found to have excessive hair loss and abnormal HF structures and skin layer construction compared to wild-type (WT) mice. The levels of Sonic hedgehog (Shh) and β-catenin, which promote HF regeneration, were significantly decreased, and the expression of bone morphogenetic protein (Bmp)2/4, an inhibitor of the anagen phase, was significantly increased in Fpr2 KO mice compared to WT mice. The proliferation of HFSCs and DPCs was significantly lower in Fpr2 KO mice than in WT mice. These findings demonstrate that FPR2 impacts signaling molecules that regulate HF regeneration, and is involved in the proliferation of HFSCs and DPCs, exerting a protective effect on hair loss.

S100A4 Gene is Crucial for Methionine-Choline-Deficient Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice

  • Zhang, Yin-Hua;Ma, De-Qiang;Ding, De-Ping;Li, Juan;Chen, Lin-Li;Ao, Kang-Jian;Tian, You-You
    • Yonsei Medical Journal
    • /
    • 제59권9호
    • /
    • pp.1064-1071
    • /
    • 2018
  • Purpose: To explore the influence of S100 calcium binding protein A4 (S100A4) knockout (KO) on methionine-choline-deficient (MCD) diet-induced non-alcoholic fatty liver disease (NAFLD) in mice. Materials and Methods: S100A4 KO mice (n=20) and their wild-type (WT) counterparts (n=20) were randomly divided into KO/MCD, Ko/methionine-choline-sufficient (MCS), WT/MCD, and WT/MCS groups. After 8 weeks of feeding, blood lipid and liver function-related indexes were measured. HE, Oil Red O, and Masson stainings were used to observe the changes of liver histopathology. Additionally, expressions of S100A4 and proinflammatory and profibrogenic cytokines were detected by qRT-PCR and Western blot, while hepatocyte apoptosis was revealed by TUNEL staining. Results: Serum levels of aminotransferase, aspartate aminotransferase, triglyceride, and total cholesterol in mice were increased after 8-week MCD feeding, and hepatocytes performed varying balloon-like changes with increased inflammatory cell infiltration and collagen fibers; however, these effects were improved in mice of KO/MCD group. Meanwhile, total NAFLD activity scores and fibrosis were lower compared to WT+MCD group. Compared to WT/MCS group, S100A4 expression in liver tissue of WT/MCD group was enhanced. The expression of proinflammatory ($TGF-{\alpha}$, $IL-1{\beta}$, IL-6) and profibrogenic cytokines ($TGF-{\beta}1$, COL1A1, ${\alpha}-SMA$) in MCD-induced NAFLD mice were increased, as well as apoptotic index (AI). For MCD group, the expressions of proinflammatory and profibrogenic cytokines and AI in KO mice were lower than those of WT mice. Conclusion: S100A4 was detected to be upregulated in NAFLD, while S100A4 KO alleviated liver fibrosis and inflammation, in addition to inhibiting hepatocyte apoptosis.

Ahnak depletion accelerates liver regeneration by modulating the TGF-β/Smad signaling pathway

  • Yang, Insook;Son, Yeri;Shin, Jae Hoon;Kim, Il Yong;Seong, Je Kyung
    • BMB Reports
    • /
    • 제55권8호
    • /
    • pp.401-406
    • /
    • 2022
  • Ahnak, a large protein first identified as an inhibitor of TGF-β signaling in human neuroblastoma, was recently shown to promote TGF-β in some cancers. The TGF-β signaling pathway regulates cell growth, various biological functions, and cancer growth and metastasis. In this study, we used Ahnak knockout (KO) mice that underwent a 70% partial hepatectomy (PH) to investigate the function of Ahnak in TGF-β signaling during liver regeneration. At the indicated time points after PH, we analyzed the mRNA and protein expression of the TGF -β/Smad signaling pathway and cell cycle-related factors, evaluated the cell cycle through proliferating cell nuclear antigen (PCNA) immunostaining, analyzed the mitotic index by hematoxylin and eosin staining. We also measured the ratio of liver tissue weight to body weight. Activation of TGF-β signaling was confirmed by analyzing the levels of phospho-Smad 2 and 3 in the liver at the indicated time points after PH and was lower in Ahnak KO mice than in WT mice. The expression levels of cyclin B1, D1, and E1; proteins in the Rb/E2F transcriptional pathway, which regulates the cell cycle; and the numbers of PCNA-positive cells were increased in Ahnak KO mice and showed tendencies opposite that of TGF-β expression. During postoperative regeneration, the liver weight to body weight ratio tended to increase faster in Ahnak KO mice. However, 7 days after PH, both groups of mice showed similar rates of regeneration, following which their active regeneration stopped. Analysis of hepatocytes undergoing mitosis showed that there were more mitotic cells in Ahnak KO mice, consistent with the weight ratio. Our findings suggest that Ahnak enhances TGF-β signaling during postoperative liver regeneration, resulting in cell cycle disruption; this highlights a novel role of Ahnak in liver regeneration. These results provide new insight into liver regeneration and potential treatment targets for liver diseases that require surgical treatment.

Deletion of adipose triglyceride lipase abolishes blood flow increase after β3-adrenergic stimulation in visceral adipose tissue of mice

  • Lee, Hye-Jin;Jin, Bo-Yeong;Park, Mi-Rae;Seo, Kwan Sik;Jeong, Yong Taek;Choi, Sang-Hyun;Kim, Dong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.355-363
    • /
    • 2021
  • Dynamic changes in adipose tissue blood flow (ATBF) with nutritional status play a role in the regulation of metabolic and endocrine functions. Activation of the sympathetic nervous system via β-adrenergic receptors (β-AR) contributes to the control of postprandial enhancement of ATBF. Herein, we sought to identify the role of each β-AR subtype in the regulation of ATBF in mice. We monitored the changes in visceral epididymal ATBF (VAT BF), induced by local infusion of dobutamine, salbutamol, and CL316,243 (a selective β1-, β2-, and β3-AR agonist, respectively) into VAT of lean CD-1 mice and global adipose triglyceride lipase (ATGL) knockout (KO) mice, using laser Doppler flowmetry. Administration of CL316,243, known to promote lipolysis in adipocytes, significantly increased VAT BF of CD-1 mice to a greater extent compared to that of the vehicle, whereas administration of dobutamine or salbutamol did not produce significant differences in VAT BF. The increase in VAT BF induced by β3-AR stimulation disappeared in ATGL KO mice as opposed to their wild-type (WT) littermates, implying a role of ATGL-mediated lipolysis in the regulation of VAT BF. Different vascular reactivities occurred despite no significant differences in vessel density and adiposity between the groups. Additionally, the expression levels of the angiogenesis-related genes were significantly higher in VAT of ATGL KO mice than in that of WT, implicating an association of ATBF responsiveness with angiogenic activity in VAT. Our findings suggest a potential role of β3-AR signaling in the regulation of VAT BF via ATGL-mediated lipolysis in mice.

Apoptosis-associated speck-like protein containing a CARD is not essential for lipopolysaccharide-induced miscarriage in a mouse model

  • Eun Young Oh;Malavige Romesha Chandanee;Young-Joo Yi;Sang-Myeong Lee
    • 농업과학연구
    • /
    • 제49권1호
    • /
    • pp.11-18
    • /
    • 2022
  • A disrupted immune system during pregnancy is involved in pregnancy complications, such as spontaneous abortion, preeclampsia, and recurrent pregnancy loss. This study examined the role of toll-like receptor (TLR) 4 and ASC (apoptosis-associated speck-like protein containing a CARD [c-terminal caspase recruitment domain]) in pregnancy complications using a lipopolysaccharide (LPS)-induced miscarriage mice model. Incidences of miscarriage and embryonic resorption were examined at 9.5 days of pregnancy in wild-type (WT), ASC knockout (KO), and TLR4 KO mice after injecting them with LPS. The fetuses and placenta were obtained after sacrifice at 15.5 days of pregnancy. A significantly lower frequency of fetus absorption was found in TLR4 KO mice, whereas corresponding absorption outcomes were strongly induced in the WT and ASC KO mice upon an LPS injection. As expected, TLR4 KO mice were resistant to LPS-induced abortion. A histological analysis of the miscarried placenta showed increasing levels of the eosin staining of spongiotrophoblast cells without any obvious difference between WT and ASC KO mice. These results suggest that TLR4 KO mice are resistant to LPS, which affects pregnancy persistence, whereas WT and ASC KO mice show high miscarriage rates due to LPS. Moreover, the ASC adaptor is not directly involved in LPS-induced miscarriages, and the NLRP3 inflammasome can be activated by other proteins in the absence of ASC.