• Title/Summary/Keyword: Mg-alloy

Search Result 1,123, Processing Time 0.027 seconds

The analysis of alkaline earth metal and its alloy by using of cation exchanger (양이온교환수지에 의한 알칼리 토금속 및 합금의 분리정량)

  • Myon-Yong Park;Byong Cho Lee;Kee Chae Park
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.45-48
    • /
    • 1971
  • The various eluents have been used for the separations of alkaline earth metals by elutions through cation exchange resin column by many investigators. We find, the mixed solution of 1M HAc and 1M NaAc (pH 4.75) is the best eluent for this purpose, becouse the one step elution through 7cm Dowex 50w${\times}$8(100~200mesh) resin column with this eluent, gives the quantitative separation. When 2M NaAc is used as a eluent Sr(II) and Ba(II) is separated easily without any contamination of Mg(II) andCa(II). The Ca-Pb alloy which is composed of Cu, Ca, Sr, Ba and abundance of Pb metal is separated quantitatively into its components by the two step elution with 0.3M HAc + 0.3M NaAc(PH 4.75) and 0.5M HAc + 0.5M NaAc(PH 4.75) as eluents through 10cm resin column.

  • PDF

Effects of Rolling Temperature on the Development of Microstructure, Texture, and Mechanical Properties in AZ31 Magnesium Alloy (AZ31 마그네슘 합금에서 압연온도가 미세조직과 집합조직 및 기계적 특성에 미치는 영향)

  • Park, No-Jin;Han, Sang-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.498-505
    • /
    • 2010
  • Wrought magnesium alloys show a low formability at room temperature, and a remarkable anisotropy of mechanical properties make it difficult to use them in a deformation process in industry. The microstructure and crystallographic texture of metals are developed during thermo-mechanical processes, and they are significant to the understanding of the mechanical properties of metals. This work studies the microstructure, texture development and tensile properties of the extruded AZ31 Mg alloy after rolling at 100 and $300^{\circ}C$. After 40% rolling at $100^{\circ}C$, many deformed twins were observed and a relatively weak texture developed. The basal poles were split and rotated towards the rolling direction about $20^{\circ}$. During 60% rolling at $300^{\circ}C$, the dynamic recrystallization (DRX) took place and developed a strong <0001>II ND fiber texture, which influenced the poor formability at room temperature.

Microstructural Analysis on Oxide Film of Al2024 Exposed to Atmospheric Conditions (대기 노출된 Al2024 알루미늄 합금 산화막에 대한 미세조직 분석)

  • Kwon, Daeyeop;Choi, Wonjun;Bahn, Chi Bum
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.62-70
    • /
    • 2021
  • Al2024 aluminum alloy specimens were exposed to atmospheric conditions for maximum 24 months and analyzed by electron microscopes to characterize their corrosion behavior and oxide film characteristics. As the exposure time increased from 12 months to 24 months, the number of pitting sites per 1 mm2 increased from ~100 to ~200. The uniform oxidation (or non-pitting) region of the 12-month exposure specimen showed 30~120 nm thick oxide layer, whereas the 24-month exposure specimen showed 170~200 nm thick oxide with the local oxygen penetration region up to 1 ㎛ deep. There was no local corrosion area observed in the 12-month exposure specimen except pitting. However, in the 24-month exposure specimen, local oxygen penetration region was observed beneath the uniform oxide layer and near the pitting cavity. Al2024 showed two times thicker uniform oxide layer but much shallower local oxygen penetration region than Al1050, which appears to be related to low Si concentration. Further research is needed on the effects of Mg segregation near the tip of the oxygen penetration region.

Electrochemical Corrosion Damage Characteristics of Aluminum Alloy Materials for Marine Environment (해양환경용 알루미늄 합금 재료의 전기화학적 부식 손상 특성)

  • Kim, Sung Jin;Hwang, Eun Hye;Park, Il-Cho;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.421-429
    • /
    • 2018
  • In this study, various electrochemical experiments were carried out to compare the corrosion characteristics of AA5052-O, AA5083-H321 and AA6061-T6 in seawater. The electrochemical impedance and potentiostatic polarization measurements showed that the corrosion resistance is decreased in the order of AA5052-O, AA5083-H321 and AA6061-T6, with AA5052-O being the highest resistant. This is closely associated with the property of passive film formed on three tested Al alloys. Based on the slope of Mott-Schottky plots of an n-type semiconductor, the density of oxygen vacancies in the passive film formed on the alloys was determined. This revealed that the defect density is increased in the order of AA5052-O, AA5083-H321 and AA6061-T6. Considering these facts, it is implied that the addition of Mg, Si, and Cu to the Al alloys can degrade the passivity, which is characterized by a passive film structure containing more defect sites, contributing to the decrease in corrosion resistance in seawater.

Investigation on Electrolytic Corrosion Characteristics with the Variation of Current Density of 5083-H321 Aluminum Alloy in Seawater (5083-H321 알루미늄 합금의 해수 내 전류밀도의 변화에 따른 전식 특성 연구)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Electrolytic corrosion of the ship's hull can be occurred due to stray current during welding work using shore power and electrical leakage using shore power supply. The electrolytic corrosion characteristics were investigated for Al5083-H321 through potentiodynamic polarization and galvanostatic corrosion test in natural seawater. Experiments of electrolytic corrosion were tested at various current densities ranging from $0.01mA/cm^2$ to $10mA/cm^2$ for 30 minutes, and at various applied time ranging from 60 to 240 minutes. Evaluation of electrolytic corrosion was carried out by Tafel extrapolation, weight loss, surface analysis after the experiment. In the electrolytic corrosion characteristics of Al5083-H321 as the current density increased, the surface damage tended to proportionally increase. In the current density of $0.01mA/cm^2$ for a applied long time, the damage tended to grow on the surface. In the case of $10mA/cm^2$ current density for a applied long time, the damage progressed to the depth direction of the surface, and the amount of weight loss per hour increased to 4 mg/hr.

Microstructure and Corrosion Properties of Plasma Electrolytic Oxide Coatings on AZ31 Magnesium Matrix Composite (플라즈마 전해 산화 처리한 AZ31 및 Al18B4O33w/AZ31 마그네슘 복합재료 피막의 미세구조 및 부식특성)

  • Cheon, Jinho;Park, Yongho;Park, Ikmin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.270-274
    • /
    • 2011
  • Plasma electrolytic oxidation (PEO) treatment was performed on squeeze cast AZ31 alloy and $Al_{18}B_4O_{33}w/AZ31$ composite. Scanning electron microscope (SEM) was employed to characterize the surface morphology and cross-section microstructure of the coating. The phase structures of the PEO coating were analyzed by X-ray diffraction (XRD). The corrosion resistance of the PEO coating was evaluated by electrochemical method. The results showed that the $Al_{18}B_4O_{33}$ whisker on the surface of the composite was decomposed and $MgAl_2O_4$ was formed in the PEO coating layer of $Al_{18}B_4O_{33}w/AZ31$ composite during PEO treatment. As a result, the electrochemical corrosion potential of the PEO coated $Al_{18}B_4O_{33}w/AZ31$ composite was increased compared with that of AZ31 alloy.

Influence of Texture on the Tensile Properties in AZ31 Magnesium Alloy (AZ31 마그네슘합금의 집합조직에 따른 인장특성)

  • Park, No-Jin;Hwang, Joong-Ho;Roh, Jae-Seung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Magnesium alloys are drawing a lot of attention and have been extensively studied. The major obstacle to the practical application of the alloys is the poor formability at room temperature, originating basically from the insufficient number of slip system. Development of a proper texture is one promising solution to improve the formability. In the present work, after extrusion and full annealing, microstructures, texture developments and tensile properties of AZ31 Mg alloys are studied. After full annealing strong <1010>||ED fiber texture and weak <1120>+<1230>||ED fiber texture (c-axes in the radial direction) were developed. The textures are distinctly influencing the tensile properties, which can be understood in terms of the activation of basal slip modes. With the random orientation, which is developed in the $45^{\circ}$ sample to the extrusion direction, the better workability can be achieved at room temperature.

Effects of Deformation Conditions on Microstructure Formation Behaviors in High Temperature Plane Strain Compressed AZ91 Magnesium Alloys (고온 평면변형된 AZ91 마그네슘 합금의 미세조직 및 집합조직의 형성거동)

  • Minho Hong;Yebin Ji;Jimin Yun;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.66-72
    • /
    • 2024
  • To investigate the effect of deformation condition on microstructure and texture formation behaviors of AZ91 magnesium alloy with three kinds of initial texure during high-temperature deformation, plane strain compression tests were carried out at high-temperature deformation conditions - temperature of 673 K~723 K, strain rate of 5 × 10-3s-1, up to a strain of -1.0. To clarify the texture formation behavior and crystal orientaion distribution, X-ray diffraction and EBSD measurement were conducted on mid-plane section of the specimens after electroltytic polishing. As a result of this study, it is found that the main component and the accumulation of pole density vary depending on initial texture and deformation caondition, and the formation and development basal texture components ({0001} <$10\bar{1}0$>) were observed regardless of the initial texure in all case of specimens.

Investigation on optimum protection potential of high-strength Al alloy(5456-H116) for application in ships (선박용 고강도 Al합금(5456-H116)의 최적 방식 전위결정에 관한 연구)

  • Kim Sung-Jong;Ko Jae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.157-168
    • /
    • 2006
  • Recently, interest in using Al alloys in ship construction instead of fiber-reinforced plastic (FRP) has increased because of the advantages of A) alloy ships over FRP ships, including high speed, increased load capacity. and ease of recycling. This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. These results will provide reference data for ship design by determining the optimum protection potential regarding hydrogen embrittlement and stress corrosion cracking. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a Passive film. In a potentiostatic experiment. the current density after 1200 sec in the Potential range of $-0.68\~-1.5\;V$ was low. This low current density indicates the protection potential range. Elongation at an applied potential of 0 V was high in this SSRT. However, corrosion protection under these conditions is impossible because the mechanical properties are worse owing to decreased strength resulting from the active dissolution reaction in parallel parts of the specimen. A film composed of $CaCO_3\;and\;Mg(OH)_2$ confers corrosion resistance. However, at potentials below -1.6 V forms non-uniform electrodeposition coating, since there is too little time to form a coating. Therefore, we concluded that the mechanical properties are poor because the effect of hydrogen gas generation exceeds that of electrodeposition. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.45 to -0.9 V (SSCE).

Influence of Hot-Extrusion on Mechanical Properties of AZ31B Magnesium Alloy Sheet (AZ31B 마그네슘 합금의 기계적 특성에 미치는 열간압출의 영향)

  • Kim Yong-Gil;Choi Hak-Kyu;Kang Min-Cheol;Jeong Hae-Yong;Bae Cha-Hurn
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • The microstructural changes by hot extrusion of AZ31B magnesium alloy were observed, and the relation to the tensile property was examined. The tensile properties as oriented longitudinal(L), half transverse(HT) and long transverse(LT) to the extrusion direction were investigated at $20^{\circ}C,\;100^{\circ}C,\;200^{\circ}C,\;300^{\circ}C\;and\;400^{\circ}C$, respectively. As the results, many recrystallized small grains distributed uniformly in large banded microstructures formed along the extrusion direction. The grain size of as-extruded specimen was around $30\~150\;{\mu}m$. As increasing the test temperature the tensile and yield strength with respect to the angle between the axis of the tensile and the longitudinal direction in extrusion was decreased, but their elongation were increased and their deviation between L and LT specimens have disappeared from $300^{\circ}C$. This mechanical anisotropy was reduced at elevated temperatures and almost disappeared at $400^{\circ}C$. It was considered that the homogenization was occured by the recrystallization and the change of slip system was occurred during tensile test process in elevated temperatures.