• Title/Summary/Keyword: Mg-alloy

Search Result 1,142, Processing Time 0.039 seconds

Optimal Design of Process Parameters for Flatness Improvement in Semi-Solid Casting Processes (반응고 주조공정에서 평면도 증대를 위한 공정변수의 최적설계)

  • Kim, Hyun-Goo;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.28-34
    • /
    • 2008
  • Mg alloy is widely used for the IT, auto and consumer electronics industries. Semi-solid casting(SSC) of magnesium alloys is used to produce high quality components. SSC process is analogous with the injection molding of plastics. The high strength and low weight characteristics of magnesium alloys render the high-precision fabrication of thin-walled components with large surface areas. To produce thin-walled magnesium alloy parts, SSC process parameters on the quality of the finished product should be clearly studied. In this paper, to select optimal process parameters, Taguchi method is applied to the optimal design of the process parameters in the SSC process. The die temperature, injection velocity and barrel temperature of the SSC process are selected for the process parameters. The effectiveness of the optimal design is verified through the CAE software.

Improvement of Fracture Toughness in 7XXX Series Aluminum Alloy Forings (7XXX계 알루미늄합금 단조재의 파괴인성 개선)

  • Song, K.H.;Lee, O.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.200-206
    • /
    • 1998
  • The aim of this study is to investigate the effect of impurity level and fabrication processes on the strength, impact and fracture toughness of 7075, 7050 and 7175 aluminum alloy forgings. A specially processed 7175S-T74 aluminum forgings was superior to a conventionally processed 7075-T73, 7050-T74 and 7175-T74 aluminum forgings in both strength and toughness. The reduction of impurity level of iron and silicon has significantly diminished the size and volume fraction of second phase particles such as $Al_7Cu_2Fe$ and $Mg_2Si$. A further reduction of the amount of second phase particles has been observed by applying a special fabrication process. This phenomena result from the application of intermediate soaking at higher temperature and more sufficiant hot working temperature than that of a conventional processing.

  • PDF

The Study of Sheet Hydro-Mechanical Forming Process for Aluminum Alloy Sheets by Experiment and Finite Element Analysis (알루미늄 판재 적용 십자형 액압성형 공정의 해석 및 실험적 고찰)

  • Shin, Dong-Woo;Yoon, Young-Sik;Kim, Dong-Ok;Ryu, Yong-Mun;Han, Beom-Suck;Gang, Dae-Geon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1000-1009
    • /
    • 2008
  • Hydro-mechanical forming process has numerous advantages compared to those of a conventional deep drawing process such as an excellent surface quality and low costs of dies. In fact, Hydro-mechanical forming is a desirable forming process for producing complex parts in automotive body components, and it is an excellent candidate for the forming process of aluminum panels. In this research, Hydro-mechanical forming process with a cross shape punch has been studied for Al-Si-Mg alloy sheets. Finite element analysis by LS-Dyna has predicted the deep drawing depth of the aluminum sheets, and the experiment has confirmed that result. Put Abstract text here.

  • PDF

Ability and Fading Behavior of Inoculants in Ductile Cast Iron Melt and Effect of Minor Elemets on them (구상흑연주철 용탕 중 접종제의 접종능과 페이딩 거동 및 이들에 미치는 미량 원소의 영향)

  • Kwon, San-Bin;Kwon, Hae-Wook;Nam, Won-Sik
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.102-108
    • /
    • 2005
  • The ability and fading behavior of inoculant in ductile cast iron melt and the effect of minor element on them were investigated. The result obtanied on nodularization and the performance of inoculant were more distinct when the melt was treated and held at the high temperature range of $1450{\sim}1500^{\circ}C$ than at the lower one of $1350{\sim}1400^{\circ}C$. The performance of 5.2%Mg-Fe-Si alloy was the best of 4 nodularizers. That of Fe-75%Si(I) alloy was better than other 4 inoculants. The performance of the Fe-75%Si(I) inoculant was deteoriated by the addition of sulfur or bismuth. On the other hand, that was improved by the addition of cerium, even though its extent was not big.

Effect of {10ī2} Twinning Characteristics on the Deformation Behavior of Rolled AZ31 Mg Alloy ({10ī2} 쌍정 특성이 AZ31 마그네슘 합금 압연재의 변형거동에 미치는 영향)

  • Park, S.H.;Hong, S.G.;Lee, J.H.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.416-422
    • /
    • 2010
  • The $\{10\bar{1}2\}$ twinning characteristics, such as active twin variants, volume fraction of twins with strain, twin morphology, twin texture and angle relationship between twins, were dependent on the activation mode (i.e., tension parallel to the caxis or compression perpendicular to the c-axis). The selection criterion of active twin variants was governed by the Schmid law. This activation of selected twin variants depending on the activation mode consequently caused a totally different plastic deformation behavior in two activation modes. The differences in the deformation characteristics, such as flow stress and work hardening rate, between both activation modes were explained in relation with activation stresses for slips and twinning, relative activities of twinning and slips during plastic deformation, grain refining effect by twin boundaries (Hall-Petch effect), and twinning-induced change in activities of slips.

Microstructure and mechanical properties of Nd:YAG Laser welded AZ31-H24 Magnesium alloy using AZ61 filler metal (AZ61 filler wire를 사용하여 Nd:YAG Laser 용접한 AZ31-H24합금의 미세조직과 기계적 특성)

  • Ryu, Chung-Seon;Lee, Mok-Yeong;Bang, Guk-Su;Jang, Ung-Seong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.322-324
    • /
    • 2007
  • Nd:YAG laser welding of AZ31B-H24 magnesium alloy was carried out using AZ61 filler wire(Mg-6wt%Al-1wt%Zn). Microstructure and mechanical properties of welded joint were examined by optical microscopy, scanning electronic microscopy(SEM), energy dispersive spectroscopy(EDS), electron probe micro analyzer(EPMA) and victors hardness, tensile test at the room and elevated temperature. Test results indicate that the specimens welded with AZ61 filler wire have better tensile strength, elongation and victors hardness at room temperature than those of welded without filler wire. However tensile strength are similar but elongation are quite different at elevated temperature.

  • PDF

A Study on the Friction Weldability of Carbon Steel (SM45C) to Aluminum Alloy (A6063) (탄소h강(SM45C)과 알루미늄 합금(A6063)의 마찰용접성에 관한 연구)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.57-63
    • /
    • 1998
  • This study deals with the friction weldability of machine structural carbon steel (SM45C) to Al-Mg-Si aluminium alloy (A6063). The bonding strength of friction welded joints, from all mechanical test, exceeded that of A6063 base metal, under the condition of friction time 1.5 sec, upset pressure 80MPa. The friction welded joints under these conditions exhibited tensile strength of 262MPa, bending angle of 90$^{\circ}$ without crack at weld interface and shear strength of 113MPa. Consequently, the friction weldability of SM4C to A6063 was very excellent, and that was possible without special preparation of weld surfaces.

  • PDF

A Study on the Experimental Evaluation of AZ31B Sheet Formability with Circle and Rectangle Shape (AZ31B 마그네슘합금 판재의 원형 및 사각 딥드로잉 성형성의 실험적 평가)

  • Kwon, K.T.;Kang, S.B.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.250-253
    • /
    • 2007
  • Since Mg alloy has many attractive advantages among the practically used metals, many researchers have been studied to develop useful process and material. The crystal structure of Magnesium was hexagonal close-packed, so its formability was poor at room temperature. But formability was improved in high temperature with increasing of slip planes, twins, dynamic recrystallization. In this study The formability of AZ31B magnesium sheet is estimated according to the variable temperatures, forming speed, thickness, blank holding force. The results of deep drawing experiences show that the formability is well at the range from 200 to $250^{\circ}C$, 20 to 60 mm/min forming speed and 2.5 to 3KN blank holding force.

  • PDF

Effect of Plasma Spraying Parameter on Mechanical and Tribological Property of Cr$_2$O$_3$ Coating Layer on AZ9lD Commercial Magenesium Alloy (AZ9lD 상용 마그네슘합금에 코팅된 Cr$_2$O$_3$층의 기계적 및 내마모 특성에 미치는 플라즈마 용사조건의 효과)

  • 이수완;박종문;이명호;김진수
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.400-405
    • /
    • 1997
  • The experimental study has been performed to deposit to deposit chromia powder on magnssium alloy for tribological and mechanical properties. The optimal condition was obtained by changing the spray condition such as working distance and gun power. As ceramics was coated onto the a light metal such as Mg according to the weight reduection of the car engine block, it could acquire that the engine efficiency deu to the weight reduction and properties such as resistance to heat, as well as wear. Coating qualities are discussed with respect to hardness, tribologicalproperty, and microstructure. The tribological and mechanical properties are investigated by using the reciprocal configuration tribometer and microharduess tester. Wear mode is determined by observing the SEM morhpology of wear track and cross section view of wear track.

  • PDF

Effect of Ti and Sr on the Microstructure of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조합금의 미세조직에 미치는 Ti 및 Sr첨가 영향)

  • Jeong, Jae-Yeong;Kim, Gyeong-Hyeon;Kim, Chang-Ju
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.71-78
    • /
    • 1990
  • This investigation was undertaken to establish the technologies of grain refinement and modification, and to characterize material properties, essential for high quality aluminum alloy castings. Grain refinement seldom changed DAS and eutectic Si size, but largely decrease grain size. The variations of grain size induced by grain refinement had a great influence on the elongation without changes in the tensile strength or yield strength. The optimum Ti level lies between 0.1% and 0.16% to achieve the best possible mechanical properties. DAS and grain size were little affected, but eutectic Si size was greatly refined by modification. The variation of eutectic Si size had a great effect on the elongation, impact value, fracture toughness and fatigue crack propagation rate without changes in the tensile strength or yield strength. The Sr content of 0.015% is optimum to modification.

  • PDF