• Title/Summary/Keyword: Mg-Zn-Y alloy

Search Result 239, Processing Time 0.025 seconds

A Study on the Prediction of the Material Properties of Magnesium Alloys Using Density Functional Theory Method (밀도함수 이론법을 이용한 마그네슘 합금의 재료특성 예측에 관한 연구)

  • Baek, Min-Sook;Won, Dae-Hee;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.637-641
    • /
    • 2007
  • The total energy and strength of Mg alloy doped with Al, Ca and Zn, were calculated using the density functional theory. The calculations was performed by two programs; the discrete variational $X{\alpha}\;(DV-X{\alpha})$ method, which is a sort of molecular orbital full potential method; Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The fundamental mixed orbital structure in each energy level near the Fermi level was investigated with simple model using $DV-X{\alpha}$. The optimized crystal structures calculated by VASP were compared to the measured structure. The density of state and the energy levels of dopant elements was discussed in association with properties. When the lattice parameter obtained from this study was compared, it was slightly different from the theoretical value but it was similar to Mk, and we obtained the reliability of data. A parameter Mk obtained by the $DV-X{\alpha}$ method was proportional to electronegativity and inversely proportional to ionic radii. We can predict the mechanical properties because $\Delta{\overline{Mk}}$is proportional to hardness.

Influence of Cu and Zn Contents on the Properties of Al-Fe-Cu-Mg Based Casting Alloys (Cu 및 Mg 첨가량에 따른 Al-Fe-Cu-Mg계 주조합금의 특성변화)

  • Kim, Jeong-Min;Kim, Nam-Hoon;Shin, Je-Sik;Kim, Ki-Tae;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.34 no.4
    • /
    • pp.130-135
    • /
    • 2014
  • Efforts have been made to develop new silicon-free aluminum casting alloys that possess high electrical and thermal conductivity. In this research Al-Fe-Cu-Mg alloys with various Cu and Mg contents were investigated for their various properties. As the Cu or Mg content was increased, the electrical conductivity gradually decreased, while the tensile strength of the Al-Fe-Cu-Mg alloy tended to be improved. It was found that fluidity was generally inversely proportional to the Cu content, but the alloys containing 1%Mg showed considerably low fluidity, regardless of the Cu content.

Effect of Mn Addition on Age Behavior and Tensile Properties of Rapidly Solidified Al-Zn-Mg-Zr Alloy (급냉응고한 Al-Zn-Mg-Zr합금의 시효거동과 인장특성에 미치는 Mn의 영향)

  • Lee, Yeong-Ho;Jang, Jun-Yeon;Yu, Jae-Eun;Mun, In-Gi;Maeng, Seon-Jae;Choe, Jong-Sul
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.50-56
    • /
    • 1997
  • 급냉응고법을 이용하여 고용한도 이상으로 Mn량을 첨가할 때 Mn량에 따른 인장특성의 변화와 시효특성을 조사하였다. 원심분무법으로 AI-4.7%Zn-2.5%Mg-0.2%Zr합금에 Mn량을 각기 달리 첨가한 급냉응고 분말을 제조 하였다. 이 분말을 냉간압축, 진공 탈가스처리를 한 후 15:1로 압출하여 봉상 시편을 만들었다. 분말의 미세조직은 $\alpha$-AI수지상과 수지상간 편석부로 이루어져 있으며 Mn첨가에 따라 조직의 변화는 관찰되지 않았다. 빠른 냉각속도로 인하여 2.0%Mn을 첨가한 경우에도 초정 Mn상을 발견할 수 없었다. 압출재의 미세조직은 아결정립으로 이루어져 있으며 약간의 제2상들이 관찰되었다. 대부분의 Mn 분산상은 압출후 용체화처리 과정에서 형성되었으며 시효경화량은 Mn양에 관계없이 일정하였다. 46$0^{\circ}C$에서 1시간 용체화처리하고 12$0^{\circ}C$에서 24시간 시효처리한 경우 최대의 시효경도값을 나타내었다. 인장강도는 Mn첨가량에 따라 증가 하였는데 이것은 Mn분산상의 밀도증가에 의한 것으로 확인되었다. 2.0%Mn을 첨가한 합금의 시효후 인장강도는 590MPa, 연산율은 4%를 보였다.

  • PDF

Microstructure Evaluation and Wear Resistance Property of Al-Si-X/Al2O3 Composite by the Displacement Reaction in Al-Mg Alloy Melt using High Energy Mechanical Milled Al-SiO2-X Composite Powder (HEMM Al-SiO2-X 복합 분말을 Al-Mg 용탕에서 자발 치환반응으로 제조된 Al-Si-X/Al2O3 복합재료의 조직 및 마멸 특성)

  • Woo, Kee-Do;Kim, Dong-Keon;Lee, Hyun-Bom;Moon, Min-Seok;Ki, Woong;Kwon, Eui-Pyo
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.339-346
    • /
    • 2008
  • Single-crystal $ZnIn_2S_4$ layers were grown on a thoroughly etched semi-insulating GaAs (100) substrate at $450^{\circ}C$ with a hot wall epitaxy (HWE) system by evaporating a $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structures of the single-crystal thin films were investigated via the photoluminescence (PL) and Double-crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by Varshni's relationship, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T2/(T+489K)$. After the as-grown $ZnIn_2S_4$ single-crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin-of-point defects of the $ZnIn_2S_4$ single-crystal thin films were investigated via the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained from the PL measurements were classified as donor or acceptor types. Additionally, it was concluded that a heat treatment in an S-atmosphere converted $ZnIn_2S_4$ single crystal thin films into optical p-type films. Moreover, it was confirmed that In in $ZnIn_2S_4$/GaAs did not form a native defects, as In in $ZnIn_2S_4$ single-crystal thin films existed in the form of stable bonds.

The Fabrication of High Strength 7XXX Aluminum Alloy Powders by Centrifugal Disc Atomization (원심분무법에 의한 고강도 7XXX 알루미늄 합금 분말의 제조)

  • Lee, Tae-Hang;Im, Seong-Moo;Cho, Sung-Suk
    • Journal of Korea Foundry Society
    • /
    • v.10 no.6
    • /
    • pp.528-537
    • /
    • 1990
  • 7XXX aluminum alloy powders produced by the self-manufactured rotating disc atomizer were investigated to determine the influence of the atomization parameters on the particle size distributions in air atmosphere. The particle size distributions are almost always bimodal with the dominant mode on the large particle size. Average powder size of 7XXX aluminum alloy is $74/{\mu}m~125/{\mu}m$ when melt is poured with the rate of 9g /sec at 730$^{\circ}C$ on a rotating disc of 30㎜ diameter at 6300rad/sec. The mass of finer particle increased when disc diameter, angular velocity, pouring temperature increased and pouring rate decreased. The powder shapes of bimodal change from acicular to tear-drop and from tear-drop to ligament with increasing powder size. Powder shape was determined by the atomization mechanism and oxidation in liquid state. Microstructure of powders appeared to be cell and cellular dendrite. The SDAS of Al-7.9wt%Zn-2.4wt%Mg-1.5wt%Cu-0.9wt%Ni Powders is $0.8{\mu}m~1.0{\mu}m$ for the powders of $size+44{\mu}m~53{\mu}m$ and $1.6{\mu}m∼1.8{\mu}m$ for the powders of $size+105{\mu}m~125{\mu}m$, repectively.

  • PDF

High Temperature Oxidation Behavior of Mg-6%Al-1%Zn-1%CaO Alloys

  • Lee, Dong Bok;Kim, Min Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.1
    • /
    • pp.42-45
    • /
    • 2017
  • The magnesium-base AZ61 alloy was cast while adding 1% CaO powder into the melt. It was hot extruded, and oxidized at $550-650^{\circ}C$ in air in order to study its microstructure and oxidation behavior. Initially added CaO powder reacted with Al in the melt to $Al_2Ca$ particles that aligned along the extrusion direction. The formed $Al_2Ca$ particles increased the oxidation resistance through forming the superficial CaO scale at the upper part of the thin MgO oxide scale.

Formation of Intermetallic compounds and mechanical properties of Zn-Mg alloy with various Mg contents (아연-마그네슘 조성에 따른 금속간 화합물 형성 및 기계적 특성)

  • Yu, Ji-Min;Byeon, Jong-Min;Kim, Tae-Yeop;Jeong, U-Seong;Kim, Yeong-Do
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.201-201
    • /
    • 2013
  • 아연-마그네슘 합금은 기존의 아연에 비해 우수한 내식성을 지녀, 차세대 강판으로 주목받고 있다. 특히 아연에 1~8wt.%의 마그네슘을 첨가하였을 때 마그네슘 함량에 따른 내식성은 점차 증가하는 것으로 알려져 있다. 하지만 아연-마그네슘 합금이 기존의 아연을 대체하기 위해서는 내식성 뿐만 아니라 기계적 특성 또한 요구되기 때문에 본 연구에서는 마그네슘 함량에 따른 아연-마그네슘 합금을 제조하고 미세조직 관찰 및 기계적 특성 평가를 실시하였다.

  • PDF

Corrosion Resistance for AZ31 Mg Alloy using Cr-free Conversion Coating (Cr-free 화성처리를 이용한 AZ31 마그네슘 합금의 내식성 향상 연구)

  • Heo, Gyu-Yong;Park, Yeong-Hui;Jeong, Jae-In;Yang, Ji-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.105-106
    • /
    • 2009
  • AZ31 (3% Al, 1% Zn) Mg 판재의 내식성 향상을 위해 Ti/Zr/Polymer 복합계의 Cr-free 화성처리 방법을 이용하였다. 염수분무시험을 통해 최고 72시간 ($5{\sim}10%$ 발청) 내식성이 나타남을 확인하였다. 화성피막의 내식성은 그 피막이 가진 성분, 균일도, 치밀도, 형상 및 두께에 의해 좌우되는 만큼 TEM, SEM을 통해 화성피막 구조가 내식성과 어떠한 관련이 있는지 조사하였다. 또한, 화성처리 전 단계 공정인 탈지와 산세 및 중화 공정의 변수 조절을 통해 전처리 공정이 최종 화성피막의 물성에 어떠한 영향을 미치는지 조사하였다. 탈지조건을 $35{\sim}40^{\circ}C$, 5분에서 $50{\sim}80^{\circ}C$, $10{\sim}20$분으로 변경 시 좀 더 균일한 외관을 얻을 수 있었고, 적절한 중화제 선택을 통해 화성피막을 균일하게 형성시킬 수 있었다. 투과전자현미경 결과로 미루어 화성피막의 두께보다 균일도와 치밀도가 내식성에 결정적인 영향을 미치는 것을 확인할 수 있었다.

  • PDF

The Effect of Grain Refinement on Fluidity of Al-4.8%CU-0.6%Mn Alloy (입자미세화가 Al-4.8%Cu-0.6%Mn 합금의 유동도에 미치는 영향)

  • Kwon, Young-Dong;Lee, Zin-Hyoung;Kim, Kyoung-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.109-113
    • /
    • 2002
  • A good fluidity of high strength Al-alloys is required to cast thin wall castings needed to reduce the weight of cast parts. The fluidity, measured as the length to which the metal flows in a standard channel, is affected by many factors, such as the pouring temperature, solidification type of the alloy, the channel thickness, melt head, mold materials and temperature, coating etc. Therefore the experimentally measured fluidity scatters very much and makes it difficult to estimate the fluidity of a melt with a few measurements. The effect of Ti content and grain refinement on the fluidity of high strength aluminum alloy was investigated with a test casting with 8 thin flow channels to reduce the scattering of the fluidity results. The fluidity of Al-4.8%Cu-0.6%Mn Al-6.2%Zn-1.6%Mg-1.0%Cu and well-known commercial aluminum alloy, A356 was tested. Initial content of Ti was varied from 0 to 0.2wt% and Al-5Ti-B master alloy was added for grain refinement. The flow length varied linearly with superheat. By adding Ti and Al-5Ti-B, the fluidity increased. The grain size decreased by adding grain refiner at the same time. The fluidity depended on the degree of grain refinement. The fluidity of the alloy solidifying in mushy type is improved by grain refinement, because grain refinement increases the solid fraction at the time of flow stoppage.

Corrosion Charateristics of PEO-treated Ti-6Al-4V Alloy in Solution Containing Si and Mg Ions

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.153-153
    • /
    • 2017
  • The application of the coating supports the mechanical characteristics of the implant, and various materials and coatings are currently being used in the implant in a way to accelerate adhesion. Especially, plasma electrolytic oxidation (PEO) coating has been proposed continually with good surface treatment of titanium alloys. Also, the PEO process can incorporate Ca and P ions on the titanium surface through variables varied factor. PEO process for bioactive surface has carried out in electrolytes containing Ca and P ions. Natural bone is composed of mineral elements such as Mg, Si, Zn, Sr, and Mn, etc. Especially, Mg and Si of these elements play role in bone formation and growth after clinical implantation of bio-implants. In this study, corrosion charateristics of PEO-treated Ti-6Al-4V alloy in solution containing Si and Mg ions has been investigated using several experimental techniques. The PEO-treated surfaces were identified by X-ray diffraction, using a diffractometer (XRD, Philips X' pert PRO, Netherlands) with Cu $K{\alpha}$ radiation. The morphology was observed by field-emission scanning electron microscopy (FE-SEM, Hitachi 4800, Japan) and energy-dispersive X-ray spectroscopy (EDX, Oxford ISIS 310, England). The potentiodynamic polarization and AC impedance tests for electrochemical degradations were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF