• 제목/요약/키워드: Mg-Cu-Y alloy

검색결과 161건 처리시간 0.024초

나노인덴테이션에 의한 Al-Si-Cu-Mg 합금 폼 셀 벽의 기계적 물성 연구 (A Nanoindentation Based Study of Mechanical Properties of Al-Si-Cu-Mg Alloy Foam Cell Wall)

  • 하산;김엄기;이창훈;이학주;고순규;조성석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.382-387
    • /
    • 2004
  • Nanoindentation technique has been used to measure the mechanical properties of aluminium alloy foam cell walls. Al-Si-Cu-Mg alloy foams of different compositions and different cell morphologies were produced using powder metallurgical method. Cell morphology of the foam was controlled during production by varying foaming time and temperature. Mechanical properties such as hardness and Young's modulus were calculated using two different methods: a continuous stiffness measurement (CSM) and an unloading stiffness measurement (USM) method. Experimental results showed that hardness and Young's modulus of Al-5%(wt.)Si-4%Cu-4%Mg (544 alloy) precursor and foam walls are higher than those of Al-3%Si-2%Cu-2%Mg (322 alloy) precursor and foam walls. It was noticed that mechanical properties of cell wall are different from those of precursor materials.

  • PDF

고강도 알루미늄 합금(Al-Cu-Mg)에서 새로운 Cu 석출물의 TEM 관찰 (A New TEM Observation of the Copper Precipitate in High Strength Al-Cu-Mg Alloy)

  • 김황수
    • Applied Microscopy
    • /
    • 제36권2호
    • /
    • pp.47-55
    • /
    • 2006
  • 이 논문에서 Al-2.5Cu-1.5Mg wt.% 합금에서 미세한 Cu 석출물에 대한 투과전자현미경 관찰이 보고 되었다. 이 새로운 관찰은 시료에 오염된 산화물을 제거하기 위해 ion milling을 하고 곧바로 시료 관찰을 했을 때 우연히 이루어 졌다. 특히 이 Cu석출물은 $150^{\circ}C$에서 100시간 aging한 시료에서 분명하게 관찰되었다. 그리고 ion milling 전 시료표면에서 분명히 관측되는 산화물은 $Cu_2O$임이 확실히 밝혀졌다. 이러한 분석과정은 회절 환 패턴의 정밀 분석을 요구함으로 이에 대한 시뮬레이션에 필요한 이론적 공식도 만들었다. 마지막으로 이 합금에 대한 예기치 않은 ion milling효과와 그 중요성이 논의되었다.

Al-Zn-Mg-Cu 다이캐스팅용 합금의 주조성 및 인장특성에 미치는 Zn 첨가량의 영향 (Effects of Zn Amounts on the Castability and Tensile Properties of Al-Zn-Mg-Cu Alloys for Die Casting)

  • 김기태;양재학;임영석
    • 한국주조공학회지
    • /
    • 제30권4호
    • /
    • pp.137-141
    • /
    • 2010
  • The effects of Zn amounts on the castability and tensile properties of Al-Zn-Mg-Cu alloys were investigated for development of high strength die casting aluminium alloys. Al-Zn-Mg-Cu alloys with 3.5% Zn showed high cast cracking tendency and poor mold filling behaviour. Al-Zn-Mg-Cu alloys with 5wt% Zn and 7wt% Zn had the tensile strengths of 300~400MPa and the elongations of 2~18%. The effect of Zn on the tensile strength of Al-Zn-Mg-Cu alloys was insignificant, but Al-Zn-Mg-Cu alloy with high Zn amount had lower elongation.

AlZnMgCu0.5 합금의 Electron Beam 용접성에 관한 연구 (Investigations on electron beam weldability of AlZnMgCu0.5 alloys)

  • 배석천
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.166-177
    • /
    • 1997
  • The high strength AlZnMgCu0.5 alloy is a light metal with good age hardenability, and has a high tensile and yielding strength. Therefore, it can be used for structures requiring high speciple strength. Even though high strength AlZnMgCu alloy has good mechanical properties, it has a lot of problems in TIG and MIG welding processes. Since lots of high heat absorption is introduced into the weldment during TIG and MIG processes, the microstructural variation and hot cracks take place in heat affected zone. Therefore, the mechanical properties of high strength AlZnMgCu0.5 alloy can be degraded in weldment and heat affected zone. Welding process utilizing high density heat source such as electron beam should be developed to reduce pore and hot cracking, whichare usually accompanied by MIG and TIG welding processes. In this work, electron beam welding process were used with or without AlMg4.5Mn as filler material to avoid the degradation of mechanical properties. Mechanical and metallurgical characteristics were also studied in electron beam weldment and heat affected zone. Moreover hot cracking mechanism was also investigated.

  • PDF

개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향 (Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy)

  • 박태현;백민석;윤상일;김진평;이기안
    • 소성∙가공
    • /
    • 제29권3호
    • /
    • pp.135-143
    • /
    • 2020
  • Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

중간가공열처리한 AI-Li계 합금의 고온변형거동 (The Hot Deformation Behaviors of Intermediate Thermo-Mechanical Treated Al-Li Based Alloy)

  • 유창영;진영철
    • 열처리공학회지
    • /
    • 제4권3호
    • /
    • pp.1-6
    • /
    • 1991
  • In this study, intermediate thermo-mechanical treated Al-2.0 wt%Li, and Al-2.0 wt%Li-1.2 wt%Cu-1.0 wt%Mg-0.12 wt%Zr alloys were tested in tension at $10^{\circ}C$ and elevated temperature(100, 200 and $300^{\circ}C$). The results are follows : The tensile strength of Al-Li-Cu-Mg-Zr alloy is the highest but the elongation of Al-Li alloy is the highest(106%) among the all alloys in tension at $300^{\circ}C$. The Portervin-LeChartlier effect is showed in AI-Li-Cu-Mg-Zr alloy at 10 and $100^{\circ}C$, because of tangled dislocation by Mg and Cu. In the true stress-strain curves of all alloy, the peaks of stress at $300^{\circ}C$ are showed at the strain less than 0.1. In the binary alloy, the dynamic restoration process at 200 and $300^{\circ}C$ is nearly similar to dynamic recovery type. The hot deformation stress is decreased with increase of dynamic recovery degree, but the elongation is increased. When the strain the strain rate are constant, the temperature dependence of hot deformation stress is increased with increase of deformation temperature. The elongation and degree of dynamic recovery are decreased with increase of hot deformation activation energy, but the deformation stresses slightly increased.

  • PDF

고강도 Al-Zn-Mg-Cu 합금에서 조성에 따른 응력부식균열 특성 (Stress Corrosion Cracking of High Strength Al-Zn-Mg-Cu Aluminum Alloy with Different Compositions)

  • 김준탁;김상호
    • 한국표면공학회지
    • /
    • 제41권3호
    • /
    • pp.109-113
    • /
    • 2008
  • High strength 7xxx series Al-Zn-Mg alloy have been investigated for using light weight automotive parts especially for bump back beam. The composition of commercial 7xxx aluminum has the Zn/Mg ratio about 3 and Cu over 2 wt%, but this composition isn't adequate for appling to automotive bump back beam due to its high resistance to extrusion and bad weldability. In this study the Zn/Mg ratio was increased for better extrusion and Cu content was reduced for better welding. With this new composition we investigated the effect of composition on the resistivity against stress corrosion cracking. As the Zn/Mg ratio is increased fracture energy obtained by slow strain rate test was decreased, which means degradation of SCC resistance. While the fracture energy was increased with Cu contents although it is below 1%, which means improvement of SCC resistance. These effects of composition change on the SCC resistivity were identified by observing the fracture surface and crack propagation.

자동차 경량 부품 제조를 위한 Al-Cu-Mg 분말 합금의 소결 및 열처리 특성 (Sintering and Heat Treatment Characteristics of Al-Cu-Mg Powder Metallurgy Alloy for Lightweight Automotive Parts)

  • 안병민
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.152-156
    • /
    • 2014
  • Lightweight materials such as aluminum and magnesium have recently received much attention in the automotive industries because of environmental and fuel-efficiency concerns. Using the powder metallurgy (PM) process for these materials creates significant opportunities for the cost-effective manufacture of lightweight automotive parts. In the present study, an Al-Cu-Mg alloy was fabricated using conventional PM processes. Primarily, the effects of the alloying elements on the sintering characteristics and mechanical behavior after heat treatment were investigated. A microstructural analysis was performed using an optical microscope and a scanning electron microscope to investigate the behavior of liquid phase sintering, including the formation of precipitates. The dependence of the mechanical behavior on the alloying elements was evaluated based on the transverse rupture strength.