• Title/Summary/Keyword: Mg skarn

Search Result 15, Processing Time 0.019 seconds

Skarn Mineralization Associated with the Imog Granite in Nokjeonri Area, Yeongwol (영월 녹전리 일대 이목화강암과 관련된 스카른 광화작용)

  • Jeong, Jun-Yeong;Shin, Dongbok;Im, Heonkyung
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.215-232
    • /
    • 2020
  • The study area of Nokjeonri in Yeongwol belongs to the Taebaeksan Mineralized District. Ca and Mg skarn and related ore mineralization are developed in the Pungchon formation along the contact with the Imog granite. Ca skarn hosted in limestone mostly comprises garnet and pyroxene. Mg skarn developed in dolomite includes olivine and serpentine. Magnetite-hematite and pyrrhotite(±scheelite)-pyritegalena-sphalerite were mineralized during early and late stage, respectively. Garnet compositions are dominated by andradite series in proximal area and grossular series in distal area. Pyroxene compositions correspond to diopside series in majority. These compositional changes indicate that the fluids varied from oxidizing condition to reducing condition due to increased reaction with carbonated wall rocks as the fluids moved from the granite to a distal place. Fe2O3 and MgO concentrations of magnetite are higher in Mg skarn than those in Ca skarn, while FeO shows opposite trend. The Zn/Fe ratio of sphalerite increases with distance from the Imog granite. The δ34S values of sulfide minerals are similar to those of the Imog granite, indicating magmatic origin in ore sulfur. Mineralization was established in the order of skarn, oxide and sulfide minerals with decreasing temperature and oxygen fugacity and increasing sulfur fugacity.

Mg-skarn Minerals from Magnetite Deposits of the Janggun Mine, Korea (장군광산(將軍鑛山)의 자철석광상(磁鐵石鑛床)에서 산출(産出)되는 Mg-스카른광물(鑛物))

  • Lee, Chan Hee;Song, Suckhwan;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.11-21
    • /
    • 1996
  • The first Mg-skarn minerals are found from magnetite ore deposits of the Janggun mine, Korea. The skarn minerals are composed of mostly chondrodite, olivine, chlorite, serpentine, phlogophite, talc, apatite, magnesite, dolomite, siderite and trace amount of clinopyroxene, amphibole, garnet, wollastonite associated with magnetite, pyrrhotite and pyrite. The skarn zone is developed in the magnetite deposits at the contact of the Mg-rich Janggun Limestone Formation and the Chunyang granite. The chondrodites are columnar and radial shapes and some of them show twins. The chemical compositions of twinning-type chondrodites have high FeO (4.63 to 5.6 wt%), MnO (0.26 to 0.46 wt%) and low MgO (55.02 to 56.18 wt%) relative to the radial-type chondrodites. Twinning in chondrodite has been formed in close relation to substitution between Mg and Fe + Mn in humite solid solution. Temperature, $-logfo_2$ and $X_{CO2}$ during the skarn stage of magnetite deposits from the Janggun mine range from 395 to $430^{\circ}C$, from 30.5 to 31.2 atm and from 0.06 to 0.09, respectively.

  • PDF

Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon Deposit, Korea (한국 포천 광상의 스카른 진화과정 및 철(-동)광화작용)

  • Go, Ji-Su;Choi, Seon-Gyu;Kim, Chang Seong;Kim, Jong Wook;Seo, Jieun
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.335-349
    • /
    • 2014
  • The Pocheon skarn deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, occurs at the contact between the Cretaceous Myeongseongsan granite and the Precambrian carbonate rocks, and is also controlled by N-S-trending shear zone. The skarn distribution and mineralogy reflects both structural and lithological controls. Three types of skarn formations based on mineral assemblages in the Pocheon skarn exist; a sodiccalcic skarn and a magnesian skarn mainly developed in the dolostone, and a calcic skarn developed in the limestone. Iron mineralization occurs in the sodic-calcic and magnesian skarn zone, locally superimposed by copper mineralization during retrograde skarn stage. The sodic-calcic skarn is composed of acmite, diopside, albite, garnet, magnetite, maghemite, anhydrite, apatite, and sphene. Retrograde alteration consists of tremolite, phlogopite, epidote, sericite, gypum, chlorite, quartz, calcite, and sulfides. Magnesian skarn mainly consists of diopside and forsterite. Pyroxene and olivine are mainly altered to tremolite, with minor phlogopite, talc, and serpentine. The calcic skarn during prograde stage mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of epidote, vesuvianite, amphibole, biotite, magnetite, chlorite, quartz, calcite, and sulfides. Microprobe analyses indicate that the majority of the Pocheon skarn minerals are enriched by Na-Mg composition and have high $Fe^{3+}/Fe^{2+}$, $Mg^{2+}/Fe^{2+}$, and $Al^{3+}/Fe^{2+}$ ratios. Clinopyroxene is acmitic and diopsidic composition, whereas garnet is relatively grossular-rich. Amphiboles are largely of tremolite, pargasite, and magnesian hastingsite composition. The prograde anhydrous skarn assemblages formed at about $400^{\circ}{\sim}500^{\circ}C$ in a highly oxidized environment ($fO_2=10^{-23}{\sim}10^{-26}$) under a condition of about 0.5 kbar pressure and $X(CO_2)=0.10$. With increasing fluid/rock interaction during retrograde skarn, epidote, amphibole, sulfides and calcite formed as temperature decreased to approximately $250^{\circ}{\sim}400^{\circ}C$ at $X(CO_2)=0.10$.

The Skarnification and Fe-Mo Mineralization at Lower Part of Western Shinyemi Ore Body in Taeback Area (태백지역 신예미 서부광체 하부의 스카른화작용 및 철-몰리브덴 광화작용)

  • Seo, Ji-Eun;Kim, Chang-Seong;Park, Jung-Woo;Yoo, In-Kol;Kim, Nam-Hyuck;Choi, Seon-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.35-46
    • /
    • 2007
  • Shinyemi skarn deposits occur as Fe-Mo skarn type and Pb-Zn-Cu hydrothermal replacement type along the contact between Cretaceous Shinyemi granitoids and Cambro-Ordovician mixed limestone and dolostone sequence of the Choseon Supergroup. In the lower part of Western Shinyemi ore body two stages of skarn formation have been observed: the early, stage I (magnesian) skarn with Fe mineralization and the late, stage II(calcic) skarn with Mo mineralization. The stage I skarn spatially is overprinted by stage II skarn. The stage I skarn is predominantly composed of olivine, magnetite and diopside whereas, the stage II skarn is dominated by hedenbergite and garnet. The skarnification process occurred in two stages, both prograde and retrograde for stage I and stage II skarns. In stage I, the prograde skarns, mainly composed of anhydrous silicate minerals, were formed at relatively higher temperatures (about $400\;to\;550^{\circ}C$) under low $CO_{2}$ fugacity ($X_{CO2}<0.1$) conditions. On the other hand, the retrograde skarns that consisted of hydrous minerals were formed at lower temperatures (about $300\;to\;400^{\circ}C$).

Mineralogy and Iron Chemistry of Garnets and Clinopyroxenes in the Skarn Deposits, the Hambaek Geosyncline Belt, Korea (함백지향내의 스카른광상에서 산출되는 석류석과 단사휘석의 광물학과 철화학)

  • 최진범;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.119-128
    • /
    • 1991
  • In the southern limb of the Hambaek geosyncline belt, large-scaled skarn deposits are developed in the Cambro-Ordovician sedimentary rocks of the Chosun Supergroup. They are the Sangdong tungsten deposit, Geodo iron-copper deposit, Yeonhwa I and II lead-zinc deposits, and Ulchin zinc-lead deposit, all of which are associated with various skarn minerals. Though different occurrences and paragenesis are found in different deposits, most skarn deposits always have skarns of garnet (andradite-grossular series) and clinopyroxene(heden-bergite-diopside series). Andradite and hedenbergite are Fe-dominant members, but show different oxidation states, that is, Fe3+ for andradite and Fe2+ for hedenbergite. According to iron chemistry and log([Fe/Al]gd/[Fe/Mg]cpx) derived from equilibrium reactions, the diopside-andradite and hedenbergite-grossular pairs suggest the oxidized state (dian type) and reduced state (hegro type), respectively. Among skarn deposits developed in the Hambaek geosynline, it can be classified that the Geodo and Yeonhwa I skarns are of dian type, while the Sangdong, Yeonhwa II, and Ulchin deposits are of hegro type. This classification is not applicable to all kinds of skarn deposits, but may be applicable to such deposits as are more controlled by oxygen fugacity than composition of skarn fluid.

  • PDF

Hidden Porphyry-Related Ore Potential of the Geumseong Mo Deposit and Its Genetic Environment (금성 몰리브데늄광상의 잠두 반암형 광체에 대한 부존가능성과 성인적 환경)

  • Choi, Seon-Gyu;Park, Jung-Woo;Seo, Ji-Eun;Kim, Chang-Seong;Shin, Jong-Ki;Kim, Nam-Hyuck;Yoo, In-Kol;Lee, Ji-Yun;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.1-14
    • /
    • 2007
  • The Guemseong mine is located near the southern margin of the Jurassic Jecheon granitoids collectively with the Cambro-Ordovician mixed dolostone-limestone series of the Yeongweol Group, Choseon Supergroup. Here, two spatially distinct types of skarn formation have been observed. The upper transitional skarn is the calcic Mo skarn which has the mineral assemblage of $garnet+hedenbergite+epidote{\pm}wollastonite{\pm}magnetite{\pm}hematite{\pm}amphibole{\pm}chlorite{\pm}vesuvianite$ within the calcite marble. On the other hand, the lower proximal skarn occurs as a discordant magnesian Fe skarn at the contact of Mo-bearing aplitic cupolas with unidirectional solidification texture(UST) within the dolomitic marble. The magnesian Fe skarn has the mineral assemlage $olivine+diopside+magnetite+tremolite+serpentine+talc+chlorite{\pm}phlogopite$. The formation of two different types of skarn and ore mineralization in Geumseong mine have been attributed to multistage and complex metasomatic replacements that ultimately resulted in silicate-oxide-sulfide sequence of metasomatism. An early prograde stage with anhydrous skarn minerals such as olivine, clinopyroxene and/or garnet with magnetite, formed from high temperature (about $500^{\circ}\;to\;400^{\circ}C$) at an environmental condition of low $CO_2$ fugacity ($XCO_2<0.1$) and 0.5 kbar. The later retrograde stage with hydrous silicates such as amphibole, serpentine, phlogopite, epidote and chlorite with molybdenite or hematite, termed from relatively lower temperature (about $400^{\circ}\;to\;300^{\circ}C$).

Magnetite and Scheelite-Bearing Skarns in Ulsan Mine, Korea (울산 광산의 철-텅그스텐 스카른화작용)

  • Choi, Seon-Gyu;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.41-54
    • /
    • 1993
  • The Ulsan Fe-W deposit, which can be classified as a calcareous skarn deposit, is represented by ore pipe consisting principally of magnetite and lesser amounts of scheelite with minor sulphides, sulphosaits, arsenides, sulpharsenides, etc. At Ulsan mine, metasomatic processes of skarn growth may be divided broadly into two stages based on the paragenetic sequence of calc-silicate minerals and their chemical composition; early and late skarn stages. Early stage has started with the formation of highly calcic assemblages of wollastonite, diopsidic clinopyroxene and nearly pure grossular, which are followed by the formation of clinopyroxenes with salite to ferrosalite composition and grandite garnets with intermediate composition. Based on these calc-silicate assemblages, the temperatures of early skarn formations have been in the ranges of $550^{\circ}$ to $450^{\circ}$. The calc-silicate assemblages formed during the earlier half period of late skarn stage show the enrichment of notable iron and slight manganese, and the depletion of magnesium; clinopyroxenes are hedenbergitic, and grandite garnets are andraditic. The formation temperatures during this skarn stage are inferred to have been in the range of $430^{\circ}$ to $470^{\circ}C$ at low $X_{CO_2}$ by data from fluid inclusions of late andraditic garnets. The later half period of late skarn stage is characterized by the hydrous alteration of pre-existing minerals and the formation of hydrous silicates. The main iron-tungsten mineralization representing prominent deposition of magnetite immediately followed by minor scheelite impregnation has taken place at the middle of early skarn stage, while complex polymetallic mineralization has proceeded during and after the late skarn stage. Various metals and semimetals of Fe, Ni, Co, Cu, Zn, As, Mo, Ag, In, Sn, Sb, Te, Pb and Bi have been in various states such as native metal, sulphides, arsenides, sulphosaits, sulpharsenides and tellurides.

  • PDF

Skarn Formation in Metamorphic Rocks of the Chungju Mine Area (충주광산 지역 계명산층의 텅스텐 스카른화작용)

  • Kim, Gun-Soo;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.185-197
    • /
    • 1995
  • Tungsten skarns in the Chungju mine which consists mainly of strata-bound type iron ore deposits are found in the vicinity of the contact between the age-unknown Kyemeongsan Formation and granitic rock intrusions of Mesozoic age($134{\pm}2Ma$). Tungsten skarns were formed extensively from alumina and silica-rich schistose rocks by the introduction of calcium and iron from hydrothermal solution. The skarns comprise a metasomatic column and are subdivided into four facies; garnet facies, wollastonite facies, epidote facies and chlorite facies. The skarn process in time-evolutional trend can be divided broadly into the four facies in terms of the paragenetic sequence of calc-silicates and their chemical composition. Skarn and ore minerals were formed in the following sequence; (1) garnet facies, adjacent to biotite granite, containing mainly garnet(>Ad96) and magnetite, (2) wollastonite facies containing mainly wollastonite and garnet(Ad95~60), (3) epidote facies, containing mainly epidote(Ps35~31), quartz, andradite-grossular(Ad63~50), and scheelite, (4) chlorite facies, adjacent to and replacing schist, containing mainly chrolite, muscovite, quartz, calcite, epidote(Ps31~25), hematite and sulfides. The mineral assemblage and mineral compositions. suggest that the chemical potentials of Ca and Fe increased toward the granitic rock, and the component Al, Mg, K, and Si decreased from the host rock to granitic rock. The homogenization temperature and salinity of fluid inclusion in scheelite, quartz and epidote of epidote facies skarn is $300-400^{\circ}C$ and 3-8wt.% eqiv. NaCl, respectively. ${\delta}^{34}S$ values of pyrite and galena associated with chlorite facies skarn is $9.13{\sim}9.51%_{\circ}$ and $5.85{\sim}5.96%_{\circ}$, respectively. The temperature obtained from isotopic com· position of coexisting pyrite-galena is $283{\pm}20^{\circ}C$. Mineral assemblages and fluid inclusion data indicate that skarn formed at low $X_{CO_2}$, approximately 0.01. Temperature of the skarn mineralization are estimated to be in the range of $400^{\circ}C$ to $260^{\circ}C$ and pressure to be 0.5 kbar. The oxygen fugacity($fo_2$) of the skarn mineralization decreased with time. The early skarn facies would have formed at log $fo_2$ values of about -25 to -27, and late skarn facies would have formed at log $fo_2$ values of -28 to -30. The estimated physicochemical condition during skarn formation suggests that the principal causes of scheelite mineralization are reduction of the ore·forming fluid and a decrease in temperature.

  • PDF

Geochemistry of Stable Isotope and Mineralization Age of Magnetite Deposits from the Janggun Mine, Korea (장군광산(將軍鑛山) 자철광상(磁鐵鑛床)의 광화시기(鑛化時期) 및 안정동위원소(安定同位元素) 지화학(地化學))

  • Lee, Hyun Koo;Lee, Chan Hee;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • The Janggun magnetite deposits occur as the lens-shaped magnesian skarn, magnetite and base-metal sulfide orebodies developed in the Cambrian Janggun Limestone Formation. The K-Ar age of alteration sericite indicates that the mineralization took place during late Cretaceous age (107 to 70 Ma). The ore deposition is divided into two stages as a early skarn and late hydrothermal stage. Mineralogy of skara stage (107 Ma) consists of iron oxide, base-metal sulfides, Mg-Fe carbonates and some Mg- and Ca-skarn minerals, and those of the hydrothermal stage (70 Ma) is deposited base-metal sulfides, some Sb- and Sn-sulfosalts, and native bismuth. Based on mineral assemblages, chemical compositions and thermodynamic considerations, the formation temperature, $-logfs_2$, $-logfo_2$ and pH of ore fluids progressively decreased and/or increased with time from skarn stage (433 to $345^{\circ}C$, 8.8 to 9.9 atm, 29.4 to 31.6 atm, and 6.1 to 7.2) to hydrothermal stage (245 to $315^{\circ}C$, 11.2 to 12.3 atm, 33.6 to 35.4 atm, and 7.3 to 7.8). The ${\delta}^{34}S$ values of sulfides have a wide range between 3.2 to 11.6‰. The calculated ${\delta}^{34}S_{H_2S}$ values of ore fluids are relatively homo-geneous as 2.9 to 5.4‰ (skam stage) and 8.7 to 13.5‰ (hydrothermal stage), which are a deep-seated igneous source of sulfur indicates progressive increasing due to the mixing of oxidized sedimentary sulfur with increasing paragenetic time. The ${\delta}^{13}C$ values of carbonates in ores range from -4.6 to -2.5‰. Oxygen and hydrogen isotope data revealed that the ${\delta}^{38}O_{H_2O}$ and ${\delta}D$ values of ore fluids decreased gradually with time from 14.7 to 1.8‰ and -85 to -73‰ (skarn stage), and from 11.1 to -0.2‰ and -87 to -80‰ (hydrothermal stage), respectively. This indicates that magmatic water was dominant during the early skarn mineralization but was progressively replaced by meteoric water during the later hydrothermal replacement.

  • PDF

Physicochemical Study of the Wondong Fe-Pb-Zn Skarn Deposit, Korea (원동(院洞) Fe-Pb-Zn 스카른광상의 물리화학적(物理化學的) 특징(特徵))

  • Chang, Ho Wan;Chang, Byung Uck
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 1992
  • The Wondong Fe-Pb-Zn deposit is located in endo and exoskarns formed along the contact between the Makkol limestone interbedding pelitic limestone of Ordovician age and quartz porphyry of Cretaceous age. At the Wondong mine, the endoskarn shows a discontinuous zonal arrangement from quartz porphyry to pelitic limestone as follows: unaltered quartz porphyry, weakly altered quartz porphyry zone, intensively altered pinkish quartz porphyry zone, garnet zone, and greyish white and fine-grained clinopyroxene zone developed at pelitic limestone side. In terms of chemical mass balance, intensively altered pinkish quartz porphyry relative to unaltered quartz porphyry shows substantial enrichments in $K_2O$, $Na_2O$, and HREE and depletions in MgO, CaO, total $Fe_2O_3$, and LREE. On the other hand, garnet zone of endoskarn is enriched in CaO, MnO, total $Fe_2O_3$, MgO and depleted in $K_2O$, $Na_2O$. $Al_2O_3$ seems to be determining inert component. Thus the behavior of elements indicates that the mobility of elements depends on the equilibration of hydrothermal fluid and minerals and affects on enrichments by fractionation from and depletions by partition to hydrothermal fluid, respectively. Traversing toward pelitic limestone from a central zone of exoskarn, the exoskarn also shows a zonal arrangement as follows: garnet zone, clinopyroxene zone, and decolored pelitic limestone. The arrangement of mineral assemblages in skarns of the Wondong mine is the result of an increase in CaO and $K_2O$ toward the pelitic limestone. Skarn and ore minerals were formed in the following sequence: early skarn, late skarn and magnetite, pyrite, sphalerite, galena, and molybdenite. On the basis of stabilities of mineral assemblages, physicochemical conditions of the late skarn and magnetite mineralization are estimated to be $350^{\circ}C{\leq}T{\leq}400^{\circ}C$ at 1 Kb, $-23{\leq}log\;fO_2{\leq}-18$, and $0.005{\leq}XCO_2{\leq}0.01$, while those of the early skarn to be $420^{\circ}C{\leq}T{\leq}550^{\circ}C$ at 1 Kb.

  • PDF