• Title/Summary/Keyword: Mg particles

Search Result 736, Processing Time 0.032 seconds

Characterization of Physical Processes and Secondary Particle Generation in Radiation Dose Enhancement for Megavoltage X-rays (MV X선의 방사선 선량 증강 현상에서 물리적 특성과 이차입자의 발생)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.791-799
    • /
    • 2019
  • We evaluated the physical properties that occur to dose enhancement and changes from secondary particle production resulting from the interaction between enhancement material. Geant4 was used to perform a Monte Carlo simulation, and the medical internal radiation dose (MIRD) head phantom were employed. X-rays of 4, 6, 10, 15, 18, and 25 MV were used. Aurum (Au) and gadolinium (Gd) were applied within the tumor volume at 10, 20, and 30 mg/g, and an experiment using soft tissue exclusively was concomitantly performed for comparison. Also, particle fluence and initial kinetic energy of secondary particle of interaction were measured to calculate equivalent doses using the radiation weight factor. The properties of physical interaction by the radiation enhancement material showed the great increased in photoelectric effect as compared to the compton scattering and pair production, occurred with the highest, in aurum and gadolinium it is shown in common. The photonuclear effect frequency increased as the energy increased, thereby increasing secondary particle production, including alpha particles, protons, and neutrons. During dose enhancement using aurum, a maximum 424.25-fold increase in the equivalent dose due to neutrons was observed. This study was Monte Carlo simulation corresponds to the physical process of energy transmission in dose enhancement. Its results may be used as a basis for future in vivo and in vitro experiments aiming to improve effects of dose enhancement.

Effect of Nano Particles on the Hathcing rate of Artemia sp. Cyst (알테미아(Artemia sp.) Cyst 부화율에 미치는 나노입자의 영향)

  • Lee, Byeong-Woo;Cho, Sang-Man;Park, Chan-Il;Jeong, Woo-Gun;Kim, Mu-Chan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.137-141
    • /
    • 2008
  • 9 kinds of nanoparticle used for this study was a particle with the size of less than 100 nm of diameter, and Artemia sp. cyst examined what kind a influence to have upon the process hatched out in nauplius. 82% hatched in nauplius at the opposition ward where a nanoparticle wasn't added after 24 time course. AGZ020, Nano silver, P-25, Sb and SnO nanoparticle showed hatching rate of 18%, 20%, 13%, 50% and 0% respectively by the 20mg/L density, and it became clear that a harmful effect is big, but I had a harmful effect compared with the opposition ward by 75%, 60%, 73% and 73% respectively by Ag-$TiO_2$, In, Sn and Zn nanoparticle, but a feeble thing was known relatively compared with AGZ020, Nano silver, P-25, Sb and SnO nanoparticle. The difference was mused this with the ingredient a nanoparticle has. Ag is included 2% and AGZ020, Nano silver and P-25 nanoparticle are used widely as anti-fungus agent, and the SnO nanoparticle which became combination is a light catalyst pill, and oxygen is used for a Sn particle. This and others, a possibility that use is generalized and flows into aquatic environment in sequence the home electronics, functionality cosmetics, anti-fungus agent and a light catalyst pill at present becomes high for nanoparticles and others. The anxiety which has an influence on the ecology world in the water with this can be generated, so I'd have to study the potential danger a nanoparticle has continuously.

  • PDF

Inflammation and Oxidative Stress as related to Airflow Limitation Severity in Retired Miners with Chronic Obstructive Pulmonary Disease (광산 이직근로자의 만성폐쇄성폐질환 기류제한 중증도와 염증 및 산화스트레스)

  • Lee, Jong Seong;Shin, Jae Hoon;Baek, Jin Ee;Jeong, Ji Yeong;Choi, Byung-Soon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.251-258
    • /
    • 2019
  • Objective: Chronic obstructive pulmonary disease(COPD) is characterized by persistent airflow limitations associated with chronic inflammatory response due to noxious particles or gases in the lung. Inflammation and oxidative stress are associated with COPD. The aim of this study was to evaluate the relationship among inflammation, oxidative stress, and airflow limitation severity in retired miners with COPD. Methods: The levels of serum high-sensitivity C-reactive protein(hsCRP) as a biomarker for inflammation, degree of reactive oxygen metabolites(dROMs) and biological antioxidants potential(BAP) in plasma as biomarkers for oxidative stress were measured in 211 male subjects with COPD. Degree of airflow limitation severity as determined by spirometry was divided into three grades grouped according to the classification of the Global Initiatives for Obstructive Lung Disease(GOLD)(1, mild; 2, moderate; $3{\leq}$, severe or more) using a fixed ratio, post- bronchodilator $FEV_1/FVC$ < 0.7. Results: Mean levels of dROMs significantly increased in relation to airflow limitation severity(GOLD 1, 317.8 U.CARR vs. GOLD 2, 320.3 U.CARR vs. GOLD $3{\leq}$, 350.9 U.CARR, p=0.047) and dROMs levels were correlated with serum hsCRP levels(r=0.514, p<0.001). Mean levels of hsCRP were higher in current smokers(non-smoker, 1.47 mg/L vs. smoker, 2.34 mg/L, p=0.006), and tended to increase with degree of airflow limitation severity(p=0.071). Mean levels of BAP were lower in current smokers(non-smoker, $1873{\mu}mol/L$ vs. smoker, $1754{\mu}mol/L$, p=0.006). Conclusions: These results suggest that inflammation and oxidative stress are related to airflow limitation severity in retired miners with COPD, and there was a correlation between inflammation and oxidative stress.

Phylogenetic and pathogenic traits of YHV3 and IHHNV detected from imported frozen shrimp (수입 냉동새우에서 검출된 YHV3와 IHHNV의 계통학 및 병원성 분석)

  • Baek, Eun Jin;Joeng, Ye Jin;Jeong, Min A;Park, Ji Yeon;Kim, Kwang Il
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.27-40
    • /
    • 2022
  • Yellow head virus (YHV), Infectious hypodermal and hematopoietic necrosis (IHHNV), Taura syndrome virus (TSV), and Infectious myositis virus (IMNV) cause serious mortality to Penaeidae shrimp in the aquaculture. In this study, YHV, IHHNV, TSV, and IMNV were surveyed from imported frozen shrimps between 2019 and 2020 via molecular diagnostic assay. Among 10 shrimp groups, YHV (n=1) and IHHNV (n=4) were detected by RT-PCR and PCR, respectively. From the phylogenetic analysis based on the partial ORF 1b region of YHV, YHV was classified into YHV genotype 3 (YHV3). And IHHNVs (n=2) detected from Litopenaeus vannamei belong to infectious IHHNV type 2. Although IHHNVs (n=2) identified from Penaeus monodon showed PCR positive results (MG 831F/R primer set), the sequences of ORF 2 and 3 were not amplified, suggesting that those samples might possess type A IHHNV related sequence of P. monodon. Furthermore, in the challenge test, even though PCR-detected isolates (YHV3/type A IHHNV related sequence or infectious IHHNV type 2) were not induced mortality to L. vannamei, viral genes were amplified suggesting that the viruses in the frozen shrimp could be non-pathogenic particles which are not enough to induce mortality.

Characterization of Wintertime Atmospheric Aerosols in Seoul Using PIXE and Supplementary Analyzers

  • Ma, Chang-Jin;Mikio Kasahara;Hwang, Kyung-Chul;Yeo, Hyun-Gu;Park, Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E
    • /
    • pp.19-27
    • /
    • 2000
  • Particle Induced X-ray Emission (PIXE) and Elemental Analysis Syztem (EAS) were applied to the investiga-tion of the Characteristics and sources of wintertime atmospheric aerosols in Seoul. Atmospheric aerosols were collected by both fine and coarse fractions using a two-stage filter pack sampler from Kon-Kuk university during the winter season of 1999. PIXE was applied to the analysis of the middle and heavy elements with atomic numbers greater than 14(Si) and EAS was applied to the measurement of the light elements such as H, C and N. The fact that 64.2% of mass of fine particles in Seoul consists of the light elements (N, C , and H) suggests that the measurement of light elements is extremely important. The average mass concentration is Seoul was 38.6$\mu\textrm{g}$m(sup)-3. Elements such as Ca, Fe, Mg, and Ti appeared to have very low Fine/Coarse ratios(0.1∼0.4), whereas che-mical components related to anthropogenic sources such as Br, V, Pb, and Zn were observed to accumulate in the fine fraction. In the Asian Dust Storm(ADS) event, the concentation of soil components increased dramatically. Reconstruction of the fine mass concentrations estimated by a newly revised simple model was fairly in good agreement with the measured ones. Source identification was attempted using the enrichment factor and Pearsons coefficient of correlation. The typical elements derived from each source could be classified by this method.

  • PDF

Preparation and Evaluation of Paclitaxel Solid Dispersion by Supercritical Antisolvent Process (초임계유체를 이용한 파클리탁셀고체분산체의 제조 및 평가)

  • Park, Jae-Hyun;Chi, Sang-Cheol;Woo, Jong-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.4
    • /
    • pp.241-247
    • /
    • 2008
  • Paclitaxel is a taxane diterpene amide, which was first extracted from the stem bark of the western yew, Taxus brevifolia. This natural product has proven to be useful in the treatment of a variety of human neoplastic disorders, including ovarian cancer, breast and lung cancer. Paclitaxel is a highly hydrophobic drug that is poorly soluble in water. It is mainly given by intravenous administration. Therefore, The pharmaceutical formulation of paclitaxel ($Taxol^{(R)}$; Bristol-Myers Squibb) contains 50% $Cremophor^{(R)}$ EL and 50% dehydrated ethanol. However the ethanol/Cremophor EL vehicle required to solubilize paclitaxel in $Taxol^{(R)}$ has a pharmacological and pharmaceutical problems. To overcome these problems, new formulations for paclitaxel that do not require solubilization by $Cremophor^{(R)}$ EL are currently being developed. Therefore this study utilized a supercritical fluid antisolvent (SAS) process for cremophor-free formulation. To select hydrophilic polymers that require solubilization for paclitaxel, we evaluated polymers and the ratio of paclitaxel/polymers. HP-${\beta}$-CD was used as a hydrophilic polymer in the preparation of the paclitaxel solid dispersion. Although solubility of paclitaxel by polymers was increased, physical stability of solution after paclitaxel/polymer powder soluble in saline was unstable. To overcome this problem, we investigated the use of surfactants. At 1/20/40 of paclitaxel/hydrophilic polymer/ surfactant weight ratio, about 10 mg/mL of paclitaxel can be solubilized in this system. Compared with the solubility of paclitaxel in water ($1\;{\mu}g/mL$), the paclitaxel solid dispersion prepared by SAS process increased the solubility of paclitaxel by near 10,000 folds. The physicochemical properties was also evaluated. The particle size distribution, melting point and amophorization and shape of the powder particles were fully characterized by particle size distribution analyzer, DSC, SEM and XRD. In summary, through the SAS process, uniform nano-scale paclitaxel solid dispersion powders were obtained with excellent results compared with $Taxol^{(R)}$ for the physicochemical properties, solubility and pharmacokinetic behavior.

The Effect of Milling Conditions for Dissolution Efficiency of Valuable Metals from PDP Waste Panels (밀링조건이 사용 후 PDP패널의 유가금속 용출효율에 미치는 영향)

  • Kim, Hyo-Seob;Kim, Chan-Mi;Lee, Chul-Hee;Lee, Sung-Kyu;Hong, Hyun-Seon;Koo, Jar-Myung;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • In this study, the microstructure and valuable metals dissolution properties of PDP waste panel powders were investigated as a function of milling parameters such as ball diameter size, milling time, and rotational speed during high-energy milling process. The complete refinement of powder could achieved at the ball diameter size of 5 mm due to sufficient impact energy and the number of collisions. With increasing milling time, the average particle size was rapidly decreased until the first 30 seconds, then decreased gradually about $3{\mu}m$ at 3 minutes and finally, increased with presence of agglomerated particles of $35{\mu}m$ at 5 minutes. Although there was no significant difference on the size of the particle according to the rotational speed from 900 to 1,100 rpm, the total valuable metals dissolution amount was most excellent at 1,100 rpm. As a result, the best milling conditions for maximum dissolving amount of valuable metals (Mg: 375 ppm, Ag 135 ppm, In: 17 ppm) in this research were achieved with 5 mm of ball diameter size, 3min of milling time, and 1,100 rpm of rotational speed.

INORGANIC SELENIUM FOR SHEEP I. SELENIUM BALANCE AND SELENIUM LEVELS IN THE DIFFERENT RUMINAL FLUID FRACTIONS

  • Serra, A.B.;Nakamura, K.;Matsui, T.;Harumoto, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.83-89
    • /
    • 1994
  • The effects of inorganic selenium (Se), selenate and selenite on Se balance levels in the different ruminal fluid fractions were studied using Japanese Corriedale wethers with an average body weight of 47 kg. A $3{\times}3$ Latin square design was used with three animal, three periods and three treatments. In each period, there was 7 d dietary adjustment followed by 5 d total collection of urine and feces. Ruminal fluid samples were obtained at 0, 1, 3, 5 and 7 h postprandially on the final day of the collection period. The three dietary treatments were: (1) without Se supplementation (control); (2) with Se supplement as sodium selenate; and (3) sodium selenite at a rate of 0.2 mg Se/kg dietary DM. The basal diet was timothy hay (Phleum pratense L.) fed 2% of body weight/d. Results indicated that Se balance were higher (p < 0.05) for those animals under supplementation than those animals under control. Overall data gathered showed a similar digestion balance of selenate and selenite in sheep. Inorganic Se, both selenate and selenite produced positive Se contents of the ruminal feed particles and protozoa. Bacterial Se increased (p < 0.05) on the first three hours post-prandially in Se supplemented diets. Gross ruminal fluid fraction, although there was improvement on their Se content under the supplemented diets, the changes were insignificant over the control. free inorganic Se and Se in soluble protein of the ruminal fluid were not significantly different for selenate and selenite. Most of the Se in the ruminal fluids of the animals under supplementation were insoluble, indicating the influence of rumen environments on Se bioavaliability.

Fluoride in soil and plant

  • Hong, Byeong-Deok;Joo, Ri-Na;Lee, Kyo-Suk;Lee, Dong-Sung;Rhie, Ja-Hyun;Min, Se-won;Song, Seung-Geun;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.522-536
    • /
    • 2016
  • Fluorine is unique chemical element which occurs naturally, but is not an essential nutrient for plants. Fluoride toxicity can arise due to excessive fluoride intake from a variety of natural or manmade sources. Fluoride is phytotoxic to most plants. Plants which are sensitive for fluorine exposure even low concentrations of fluorine can cause leave damage and a decline in growth. All vegetation contains some fluoride absorbed from soil and water. The highest levels of F in field-grown vegetables are found up to $40mg\;kg^{-1}$ fresh weight although fluoride is relatively immobile and is not easily leached in soil because most of the fluoride was not readily soluble or exchangeable. Also, high concentrations of fluoride primarily associated with the soil colloid or clay fraction can increase fluoride levels in soil solution, increasing uptake via the plant root. In soils more than 90 percent of the natural fluoride ranging from 20 to $1,000{\mu}g\;g^{-1}$ is insoluble, or tightly bound to soil particles. The excess accumulation of fluorides in vegetation leads to visible leaf injury, damage to fruits, changes in the yield. The amount of fluoride taken up by plants depending on the type of plant, the nature of the soil, and the amount and form of fluoride in the soil should be controlled. Conclusively, fluoride is possible and long-term pollution effects on plant growth through accumulation of the fluoride retained in the soil.

Role of Ca in Modifying Corrosion Resistance and Bioactivity of Plasma Anodized AM60 Magnesium Alloys

  • Anawati, Anawati;Asoh, Hidetaka;Ono, Sachiko
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.120-124
    • /
    • 2016
  • The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in $0.5mol\;dm^{-3}\;Na_3PO_4$ solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase $Al_2Ca$. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of $Al_2Ca$ phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range $30-40{\mu}m$. The heat resistant phase of $Al_2Ca$ was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.