• 제목/요약/키워드: Mg Alloy Sheet

검색결과 96건 처리시간 0.021초

일반주조 및 쌍롤주조 공정으로 제조된 Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca 합금 판재의 열처리에 따른 미세조직 및 기계적 특성 변화 (Changes in Microstructure and Mechanical Properties due to Heat Treatment of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca Alloy Sheet Manufactured via Normal Casting and Twin Roll Casting Process)

  • 엄동환;박노진
    • 열처리공학회지
    • /
    • 제36권6호
    • /
    • pp.359-366
    • /
    • 2023
  • Changes in microstructure and mechanical properties of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca (AZMX1100) alloy sheet manufactured by normal casting and twin roll casting process, were studied according to process and heat treatment. Non-uniform microstructure was observed in the initial sheet produced through both processes, and in particular, tilted dendrites and shifted central segregation were observed in the twin roll casting sheet. It was homogenized through hot rolling and heat treatment, and heat treated at 350℃ and 400℃ to compare the effect of heat treatment temperature. Both sheets were homogenized by the hot rolling process, and the grain size increased as the heat treatment temperature and time increased. It was confirmed that the grain size, deviation, and distribution of the second phase were finer and more homogenized in the TRC sheet. Accordingly, mechanical properties such as hardness, formability, and tensile strength also showed better values. However, unlike other previously reported AZMX alloy systems, it showed low formability (Erichsen value), which was judged by the influence of Al2Ca present in the microstructure.

AZ31 판재의 부풀림 성형 특성 (Blow forming characteristics of AZ31 sheet)

  • 권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.99-102
    • /
    • 2006
  • In the present study, the blow forming characteristics of AZ31 sheet was investigated to test the feasibility of the practical application of wrought Mg alloys. Mg alloys have drawn a huge attention in the field of transportation and consumer electronics industries since it is the lightest alloy which could be industrially applicable. Most Mg alloy components have been fabricated by casting method. However, there have been a lot of research activities on the wrought alloys and their plastic forming process recently. Shallow cups for the small electronics cases have been stamped with warm die system. However, some technical issues will challenge Mg forming when large parts are considered with warm die system over $200^{\circ}C$. Most of all, thermal expansion of die system will deteriorate a die accuracy. On the other hand, blow forming does not have a problem with inaccuracy with die system. In this study, tensile tests were followed by blow forming at various temperature and pressure. AZ31 sheet showed a superplastic deformation behavior with extensive grain boundary sliding at the temperature above $300^{\circ}C$. However, the deformation behavior was likely to differ depending on stress condition.

  • PDF

유한요소해석을 이용한 Mg 합금 판재 성형 공정 변수 분석 (FEM analysis for process variables in sheet metal forming for Mg alloy)

  • 이영선;권용남;이정환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1082-1086
    • /
    • 2004
  • Since the sheet forming of Mg alloy has many difficulties due to the low formability, many forming conditions need to be selected properly. Especially, the process variables should be investigated to increase the formability, such as, forming temperature. In this paper, the effects of forming process variables has been investigated using the bending and deep drawing process. A simple U-bending designed for mobile part could be formed in room temperature and springback amounts are surveyed. On the other hand, square cup part couldn't be formed in room temperature due to the low formability. Therefore, the effects of forming temperature are investigated in deep drawing process for square cup part. As a experimental and FEM results, the optimum forming temperature is presence and formability in a higher temperature is less than that of lower temperature. Above experimental results are compared with the FEM analysis and well coincided with the experimental results. Therefore, more detail investigations could be progressed to select more appropriate process conditions by the FEA.

  • PDF

Mg AZ31B 판재의 기계적 특성과 성형성 분석 (A Study on the Mechanical Properties and Formability of Mg AZ31B Sheet)

  • 이규현;윤태욱;강창룡
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.495-500
    • /
    • 2014
  • Magnesium alloys are currently expected to be widely used for weight reduction of cars and as high efficient materials in the automotive and electronics industries. Although the specific strength of magnesium is excellent, it cannot be easily formed at room temperature due to its HCP structure. However in order to improve the formability of magnesium, it is necessary to investigate its formability in the warm temperature range. In the current study, the aim was to add to the magnesium property database so that the mass production of a magnesium car body can be accomplished. Warm tensile tests were conducted and the forming limit diagram was determined to confirm formability characteristics of magnesium AZ31B alloy sheet. In addition the bending formability and the magnesium damping capacity were evaluated for AZ31B and compared to SPRC440E which is a sheet steel used for car bodies.

AZ31 합금 판재의 변형모드에 따른 성형한계에 관한 연구 (A Study of Forming limits of Transformation mode of AZ31 Alloy sheet)

  • 정진호;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.378-382
    • /
    • 2008
  • Since the sheet metal forming of Mg alloy is perform at elevated temperature, the effect of strain rates related with the forming temperature and forming speed and R-value is very important factor for formability and forming limits and deep drawing. It is investigated that the effect of material properties such as various temperature, forming speed and strain rates on formability and R-value of Mg alloy sheet in round cup deep drawing. Therefore, the investigation for process variables is necessary to improve formability and forming limits and deep drawing. Also, the effects of strain rate and drawbility were studied by the experiment. The temperature, forming speed, and strain rates and R-value are investigated. Forming of Mg alloy takes consider into temperature, proper forming speed and strain-rate and R-value the formed parts were good without defects for forming limits and deep drawing.

  • PDF

열처리가 Al-Mg 코팅 강판의 내식성에 미치는 영향 (Effect of Heat Treatment on the Corrosion Resistance of the Al-Mg Coated Steel Sheet)

  • 정재훈;양지훈;송민아;김성환;정재인;이명훈
    • 한국표면공학회지
    • /
    • 제47권4호
    • /
    • pp.186-191
    • /
    • 2014
  • Double layer films which consisted of aluminum(Al) and magnesium(Mg) have been prepared by e-beam deposition. The structure, alloy phase, and corrosion resistance of the prepared films were investigated before and after heat treatment. The first (bottom) layer fixed with Al, and the thickness ratio between Al and Mg layers has been changed from 1 : 1 to 5 : 1, respectively. Total thickness of Al-Mg film was fixed at $3{\mu}m$. The cold-rolled steel sheet was used as a substrate. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 2, 3 and 10 min. Surface morphology of as-deposited Al-Mg film having Mg top layer showed plate-like structure. The morphology was not changed even after heat treatment. However, cross-sectional morphology of Al-Mg films was drastically changed after heat treatment, especially for the samples heat treated for 10 min. The morphology of as-deposited films showed columnar structure, while featureless structure of the films appeared after heat treatment. The x-ray diffraction data for as-deposited Al-Mg films showed only pure Al and Mg peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ appeared after heat treatment of the films. It is believed that the formation of Al-Mg alloy phase affected the structure change of Al-Mg film. It was found that the corrosion resistance of Al-Mg film was increased after heat treatment.

Mg 합금 온간 판재 성형시 공정 변수의 영향에 관한 연구 (An Effect on the Process Parameter of Mg Alloy at Warm Sheet Forming)

  • 이영선;권용남;김민철;최상운;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.43-47
    • /
    • 2006
  • Since the sheet metal forming of Mg alloy is performing at elevated temperature, the effect of process conditions related with the forming temperature is very important factor. Therefore, the investigation for process variables is necessary to design the tools and process conditions. In this study, the effects of process variables were studied by the experimental and FE analysis using the square cup deep drawing. The temperature, forming speed, and lubricant condition were investigated. When forming temperature was $250^{\circ}C$, speed forming was low, and teflon sheet was used as lubricant, the formed parts were good without defects.

  • PDF

비대칭 압연한 마그네슘 합금판재의 집합조직 발달 (Texture Evolution of Asymmetrically Rolled Mg Alloy Sheets)

  • 정효태;이규동;이수연;하태권;최병학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.64-66
    • /
    • 2007
  • Asymmetric rolling, where circumferential velocities of the upper and lower rolls differ, can be one method to change texture of magnesium alloy sheet by introducing shear deformation throughout the thickness of a sheet. In this study, the texture, microstructure and mechanical properties of AZ31 Mg sheets has been investigated during the symmetrical rolling procedure and the asymmetric rolling procedures of different roll speeds with different roll diameters. Texture of Mg alloy sheets were evaluated by using X-ray diffraction and ODFs were calculated using ADC method. The major texture of rolled specimens can be expressed by ND//(0001) fiber texture. The major fiber texture changed according to the rolling processes and such a slight difference of texture changes the formability of sheets. The mechanical properties were enhanced during asymmetrical rolling.

  • PDF

AZ31B 합금판재 성형관련 기초물성 실험 및 해석 연구 (Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet)

  • 김세호;박기동;장정호;김경태;이형욱;이근안;김기풍;이용신
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.466-472
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

AZ31B 합금판재 성형관련 기초물성 시험 및 해석 연구 (Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet)

  • 김세호;박기동;장정호;김경태;이형욱;이근안;최석우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.366-369
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

  • PDF