• Title/Summary/Keyword: Metropolis-Hastings algorithm.

Search Result 42, Processing Time 0.029 seconds

Bayesian Modeling of Mortality Rates for Colon Cancer

  • Kim Hyun-Joong
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.177-190
    • /
    • 2006
  • The aim of this study is to propose a Bayesian model for fitting mortality rate of colon cancer. For the analysis of mortality rate of a disease, factors such as age classes of population and spatial characteristics of the location are very important. The model proposed in this study allows the age class to be a random effect in addition to its conventional role as the covariate of a linear regression, while the spatial factor being a random effect. The model is fitted using Metropolis-Hastings algorithm. Posterior expected predictive deviances, standardized residuals, and residual plots are used for comparison of models. It is found that the proposed model has smaller residuals and better predictive accuracy. Lastly, we described patterns in disease maps for colon cancer.

Bayesian Multiple Change-Point Estimation of Multivariate Mean Vectors for Small Data

  • Cheon, Sooyoung;Yu, Wenxing
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.999-1008
    • /
    • 2012
  • A Bayesian multiple change-point model for small data is proposed for multivariate means and is an extension of the univariate case of Cheon and Yu (2012). The proposed model requires data from a multivariate noncentral $t$-distribution and conjugate priors for the distributional parameters. We apply the Metropolis-Hastings-within-Gibbs Sampling algorithm to the proposed model to detecte multiple change-points. The performance of our proposed algorithm has been investigated on simulated and real dataset, Hanwoo fat content bivariate data.

DEFAULT BAYESIAN INFERENCE OF REGRESSION MODELS WITH ARMA ERRORS UNDER EXACT FULL LIKELIHOODS

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.169-189
    • /
    • 2004
  • Under the assumption of default priors, such as noninformative priors, Bayesian model determination and parameter estimation of regression models with stationary and invertible ARMA errors are developed under exact full likelihoods. The default Bayes factors, the fractional Bayes factor (FBF) of O'Hagan (1995) and the arithmetic intrinsic Bayes factors (AIBF) of Berger and Pericchi (1996a), are used as tools for the selection of the Bayesian model. Bayesian estimates are obtained by running the Metropolis-Hastings subchain in the Gibbs sampler. Finally, the results of numerical studies, designed to check the performance of the theoretical results discussed here, are presented.

Bayesian Inference for Switching Mean Models with ARMA Errors

  • Son, Young Sook;Kim, Seong W.;Cho, Sinsup
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.981-996
    • /
    • 2003
  • Bayesian inference is considered for switching mean models with the ARMA errors. We use noninformative improper priors or uniform priors. The fractional Bayes factor of O'Hagan (1995) is used as the Bayesian tool for detecting the existence of a single change or multiple changes and the usual Bayes factor is used for identifying the orders of the ARMA error. Once the model is fully identified, the Gibbs sampler with the Metropolis-Hastings subchains is constructed to estimate parameters. Finally, we perform a simulation study to support theoretical results.

Bayesian Procedure for the Multiple Change Point Analysis of Fraction Nonconforming (부적합률의 다중변화점분석을 위한 베이지안절차)

  • Kim, Kyung-Sook;Kim, Hee-Jeong;Park, Jeong-Soo;Son, Young-Sook
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.319-324
    • /
    • 2006
  • In this paper, we propose Bayesian procedure for the multiple change points analysis in a sequence of fractions nonconforming. We first compute the Bayes factor for detecting the existence of no change, a single change or multiple changes. The Gibbs sampler with the Metropolis-Hastings subchain is run to estimate parameters of the change point model, once the number of change points is identified. Finally, we apply the results developed in this paper to both a real and simulated data.

  • PDF

Inverted exponentiated Weibull distribution with applications to lifetime data

  • Lee, Seunghyung;Noh, Yunhwan;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.227-240
    • /
    • 2017
  • In this paper, we introduce the inverted exponentiated Weibull (IEW) distribution which contains exponentiated inverted Weibull distribution, inverse Weibull (IW) distribution, and inverted exponentiated distribution as submodels. The proposed distribution is obtained by the inverse form of the exponentiated Weibull distribution. In particular, we explain that the proposed distribution can be interpreted by Marshall and Olkin's book (Lifetime Distributions: Structure of Non-parametric, Semiparametric, and Parametric Families, 2007, Springer) idea. We derive the cumulative distribution function and hazard function and calculate expression for its moment. The hazard function of the IEW distribution can be decreasing, increasing or bathtub-shaped. The maximum likelihood estimation (MLE) is obtained. Then we show the existence and uniqueness of MLE. We can also obtain the Bayesian estimation by using the Gibbs sampler with the Metropolis-Hastings algorithm. We also give applications with a simulated data set and two real data set to show the flexibility of the IEW distribution. Finally, conclusions are mentioned.

Bayesian Change Point Analysis for a Sequence of Normal Observations: Application to the Winter Average Temperature in Seoul (정규확률변수 관측치열에 대한 베이지안 변화점 분석 : 서울지역 겨울철 평균기온 자료에의 적용)

  • 김경숙;손영숙
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.281-301
    • /
    • 2004
  • In this paper we consider the change point problem in a sequence of univariate normal observations. We want to know whether there is any change point or not. In case a change point exists, we will identify its change type. Namely, it can be a mean change, a variance change, or both the mean and variance change. The intrinsic Bayes factors of Berger and Pericchi (1996, 1998) are used to find the type of optimal change model. The Gibbs sampling including the Metropolis-Hastings algorithm is used to estimate all the parameters in the change model. These methods are checked via simulation and applied to the winter average temperature data in Seoul.

Bayesian logit models with auxiliary mixture sampling for analyzing diabetes diagnosis data (보조 혼합 샘플링을 이용한 베이지안 로지스틱 회귀모형 : 당뇨병 자료에 적용 및 분류에서의 성능 비교)

  • Rhee, Eun Hee;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.131-146
    • /
    • 2022
  • Logit models are commonly used to predicting and classifying categorical response variables. Most Bayesian approaches to logit models are implemented based on the Metropolis-Hastings algorithm. However, the algorithm has disadvantages of slow convergence and difficulty in ensuring adequacy for the proposal distribution. Therefore, we use auxiliary mixture sampler proposed by Frühwirth-Schnatter and Frühwirth (2007) to estimate logit models. This method introduces two sequences of auxiliary latent variables to make logit models satisfy normality and linearity. As a result, the method leads that logit model can be easily implemented by Gibbs sampling. We applied the proposed method to diabetes data from the Community Health Survey (2020) of the Korea Disease Control and Prevention Agency and compared performance with Metropolis-Hastings algorithm. In addition, we showed that the logit model using auxiliary mixture sampling has a great classification performance comparable to that of the machine learning models.

Semiparametric Bayesian Regression Model for Multiple Event Time Data

  • Kim, Yongdai
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.4
    • /
    • pp.509-518
    • /
    • 2002
  • This paper is concerned with semiparametric Bayesian analysis of the proportional intensity regression model of the Poisson process for multiple event time data. A nonparametric prior distribution is put on the baseline cumulative intensity function and a usual parametric prior distribution is given to the regression parameter. Also we allow heterogeneity among the intensity processes in different subjects by using unobserved random frailty components. Gibbs sampling approach with the Metropolis-Hastings algorithm is used to explore the posterior distributions. Finally, the results are applied to a real data set.

Bayesian Prediction of Exponentiated Weibull Distribution based on Progressive Type II Censoring

  • Jung, Jinhyouk;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.427-438
    • /
    • 2013
  • Based on progressive Type II censored sampling which is an important method to obtain failure data in a lifetime study, we suggest a very general form of Bayesian prediction bounds from two parameters exponentiated Weibull distribution using the proper general prior density. For this, Markov chain Monte Carlo approach is considered and we also provide a simulation study.