• 제목/요약/키워드: Metropolis-Hastings 알고리즘

검색결과 18건 처리시간 0.029초

강우빈도분석에서 확률분포의 매개변수에 대한 불확실성 해석: Bayesian MCMC 및 Metropolis-Hastings 알고리즘을 중심으로 (Uncertainty Analysis for Parameters of Probability Distribution in Rainfall Frequency Analysis: Bayesian MCMC and Metropolis-Hastings Algorithm)

  • 서영민;지홍기;이순탁
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1385-1389
    • /
    • 2010
  • 수자원 계획에 있어서 강우 또는 홍수빈도분석시 주로 사용되는 확률의 개념은 상대빈도에 대한 극한으로 확률을 정의하는 빈도학파적 확률관점에 속하며, 확률모델에서 미지의 매개변수들은 고정된 상수로 간주된다. 따라서 확률은 객관적이고 매개변수들은 고정된 값을 가지기 때문에 이러한 매개변수들에 대한 확률론적 설명은 매우 어렵다. 본 연구에서는 강우빈도해석에서 확률분포의 매개변수에 대한 불확실성을 정량화하기 위하여 베이지안 MCMC 및 Metropolis-Hastings 알고리즘을 이용한 불확실성 평가모델을 구축하였다. 그리고 베이지안 MCMC 및 Metropolis-Hastings 알고리즘의 적용을 통하여 확률강우량 산정시 확률분포의 매개변수에 대한 통계학적 특성 및 불확실성 구간을 정량화하였으며, 이를 바탕으로 홍수위험평가 및 의사결정과정에서 불확실성 및 위험도를 충분히 설명할 수 있는 프레임워크 구성을 위한 기초를 마련할 수 있었다.

  • PDF

불완전 자료에 대한 Metropolis-Hastings Expectation Maximization 알고리즘 연구 (Metropolis-Hastings Expectation Maximization Algorithm for Incomplete Data)

  • 전수영;이희찬
    • 응용통계연구
    • /
    • 제25권1호
    • /
    • pp.183-196
    • /
    • 2012
  • 결측자료(missing data), 절단분포(truncated distribution), 중도절단자료(censored data) 등 불완전한 자료(incomplete data)하의 추론문제(incomplete problems)는 통계학에서 자주 발생되는 현상이다. 이런 문제의 해결방법으로 Expectation Maximization, Monte Carlo Expectation Maximization, Stochastic Expectation Maximization 알고리즘 등을 이용하는 방법이 있지만, 정형화된 분포의 가정이 필요하다는 단점을 가지고 있다. 본 연구에서는 정형화된 분포의 가정이 없는 경우에 사용할 수 있는 Metropolis-Hastings Expectation Maximization(MHEM) 알고리즘을 제안하고자 한다. MHEM 알고리즘의 효율성은 중도절단자료(censored data)를 이용한 모의실험과 KOSPI 200 수익률의 실증자료분석를 통해 알수 있었다.

Bayesian MCMC 및 Metropolis Hastings 알고리즘을 이용한 강우빈도분석에서 확률분포의 매개변수에 대한 불확실성 해석 (Uncertainty Analysis for Parameters of Probability Distribution in Rainfall Frequency Analysis by Bayesian MCMC and Metropolis Hastings Algorithm)

  • 서영민;박기범
    • 한국환경과학회지
    • /
    • 제20권3호
    • /
    • pp.329-340
    • /
    • 2011
  • The probability concepts mainly used for rainfall or flood frequency analysis in water resources planning are the frequentist viewpoint that defines the probability as the limit of relative frequency, and the unknown parameters in probability model are considered as fixed constant numbers. Thus the probability is objective and the parameters have fixed values so that it is very difficult to specify probabilistically the uncertianty of these parameters. This study constructs the uncertainty evaluation model using Bayesian MCMC and Metropolis -Hastings algorithm for the uncertainty quantification of parameters of probability distribution in rainfall frequency analysis, and then from the application of Bayesian MCMC and Metropolis- Hastings algorithm, the statistical properties and uncertainty intervals of parameters of probability distribution can be quantified in the estimation of probability rainfall so that the basis for the framework configuration can be provided that can specify the uncertainty and risk in flood risk assessment and decision-making process.

Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 사전분포의 적용성 비교 (At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Comparative study for construction of Prior distribution)

  • 김상욱;이길성;박경신
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1121-1124
    • /
    • 2008
  • 저수분석(low flow analysis)은 수자원공학에서 중요한 분야 중 하나이며, 특히 저수량 빈도분석(low flow frequency analysis)의 결과는 저수(貯水)용량의 설계, 물 수급계획, 오염원의 배치 및 관개와 생태계의 보존을 위한 수량과 수질의 관리에 중요하게 사용된다. 그러므로 본 연구에서는 저수량 빈도분석을 위한 점빈도분석을 수행하였으며, 특히 빈도분석에 있어서의 불확실성을 탐색하기 위하여 Bayesian 방법을 적용하고 그 결과를 기존에 사용되던 불확실성 탐색방법과 비교하였다. 본 논문의 I편에서는 Bayesian 방법 중 사전분포(prior distribution)와 우도함수(likelihood function)의 복잡성에 상관없이 계산이 가능한 Bayesian MCMC(Bayesian Markov Chain Monte Carlo) 방법과 Metropolis-Hastings 알고리즘을 사용하기 위한 여러과정의 이론적 배경과 Bayesian 방법에서 가장 중요한 요소인 사전분포를 구축하고 이를 비교 및 평가하였다. 고려된 사전분포는 자료에 기반하지 않은 사전분포와 자료에 기반한 사전분포로써 두 사전분포를 이용하여 Metropolis-Hastings 알고리즘을 수행하고 그 결과를 비교하여 저수량 빈도분석에 합리적인 사전분포를 선정하였다. 또한 알고리즘의 수행과정에서 필요한 제안분포(proposal distribution)를 적용하여 그에 따른 알고리즘의 효율성을 채택률(acceptance rate)을 산정하여 검증해 보았다. 사전분포의 분석 결과, 자료에 기반한 사전분포가 자료에 기반하지 않은 사전분포보다 정확성 및 불확실성의 표현에 있어서 우수한 결과를 제시하는 것을 확인할 수 있었고, 채택률을 이용한 알고리즘의 효용성 역시 기존 연구자들이 제시하였던 만족스러운 범위를 가지는 것을 알 수 있었다. 최종적으로 선정된 사전분포는 본 연구의 II편에서 Bayesian MCMC 방법의 사전분포로 이용되었으며, 그 결과를 기존 불확실성의 추정방법의 하나인 2차 근사식을 이용한 최우추정(maximum likelihood estimation)방법의 결과와 비교하였다.

  • PDF

소량자료를 위한 베이지안 다중 변환점 모형 (Bayesian Multiple Change-Point for Small Data)

  • 전수영
    • Communications for Statistical Applications and Methods
    • /
    • 제19권2호
    • /
    • pp.237-246
    • /
    • 2012
  • 다중 변환점(multiple change-point) 추론에 있어 소량자료에 관한 연구는 많지 않다. 본 논문에서는 소량 자료의 다중 변환점 추정을 위해 베이지안 비중심(noncentral) t 분포 변환점 모형을 제안하고, 제안된 모형 추론을 위해 메트로폴리스-해스팅스를 포함한 깁스 샘플링(Metropolis-Hastings-Within-Gibbs sampling) 알고리즘을 이용하였다. 모의실험 및 태풍 발생 수의 실증 분석결과는 제안된 모형과 알고리즘의 우수성을 보여 준다.

Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 이론적 배경과 사전분포의 구축 (At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Theoretical Background and Construction of Prior Distribution)

  • 김상욱;이길성
    • 한국수자원학회논문집
    • /
    • 제41권1호
    • /
    • pp.35-47
    • /
    • 2008
  • 저수분석(low flow analysis)은 수자원공학에서 중요한 분야 중 하나이며, 특히 저수량 빈도분석(low flow frequency analysis)의 결과는 저수(貯水)용량의 설계, 물 수급계획, 오염원의 배치 및 관개와 생태계의 보존을 위한 수량과 수질의 관리에 중요하게 사용된다. 그러므로 본 연구에서는 저수량 빈도분석을 위한 점 빈도분석을 수행하였으며, 특히 빈도분석에 있어서의 불확실성을 탐색하기 위하여 Bayesian 방법을 적용하고 그 결과를 기존에 사용되던 불확실성 탐색방법과 비교하였다. 본 논문의Ⅰ편에서는 Bayesian 방법 중 사전분포(prior distribution)와 우도함수(likelihood function)의 복잡성에 상관없이 계산이 가능한 Bayesian MCMC(Bayesian Markov Chain Monte Carlo) 방법과 Metropolis-Hastings 알고리즘을 사용하기 위한 여러 과정의 이론적 배경과 Bayesian 방법에서 가장 중요한 요소인 사전분포를 구축하고 이를 비교 및 평가하였다. 고려된 사전분포는 자료에 기반하지 않은 사전분포와 자료에 기반한 사전분포로써 두 사전분포를 이용하여 Metropolis-Hastings 알고리즘을 수행하고 그 결과를 비교하여 저수량 빈도분석에 합리적인 사전분포를 선정하였다. 또한 알고리즘의 수행과정에서 필요한 제안분포(proposal distribution)를 적용하여 그에 따른 알고리즘의 효율성을 채택률(acceptance rate)을 산정하여 검증해 보았다. 사전분포의 분석 결과, 자료에 기반한 사전분포가 자료에 기반하지 않은 사전분포보다 정확성 및 불확실성의 표현에 있어서 우수한 결과를 제시하는 것을 확인할 수 있었고, 채택률을 이용한 알고리즘의 효용성 역시 기존 연구자들이 제시하였던 만족스러운 범위를 가지는 것을 알 수 있었다. 최종적으로 선정된 사전분포는 본 연구의 II편에서 Bayesian MCMC방법의 사전분포로 이용되었으며, 그 결과를 기존 불확실성의 추정방법의 하나인 2차 근사식을 이용한 최우추정(maximum likelihood estimation)방법의 결과와 비교하였다.

베이지안 통계 추론 (On the Bayesian Statistical Inference)

  • 이호석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.263-266
    • /
    • 2007
  • 본 논문은 베이지안 통계 추론에 대하여 논의한다. 논문은 베이지안 추론, Markov Chain과 Monte Carlo 적분, MCMC(Markov Chain Monte Carlo) 기법, Metropolis-Hastings 알고리즘, Gibbs 샘플링, Maximum Likelihood Estimation, EM 알고리즘, 상실된 데이터 보완 기법, BMA(Bayesian Model Averaging) 순서로 논의를 진행한다. 이러한 통계적 기법들은 대용량의 데이터를 처리하는 생물학, 의학, 생명 공학, 과학과 공학, 그리고 일반 데이터 조사와 처리 등에 사용되고 있으며, 최적의 추론 결과를 이끌어 내는데 중요한 방법을 제공하고 있다. 그리고 마지막으로 PC(Principal Component) 분석 기법에 대하여 논의한다. PC 분석 기법도 데이터 분석과 연구에 많이 활용된다.

  • PDF

베이지안 방법을 이용한 정상성 및 비정상성 GEV모형의 불확실성 비교 연구 (Comparison Study of Uncertainty between Stationary and Nonstationary GEV Models using the Bayesian Inference)

  • 김한빈;주경원;정영훈;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.298-298
    • /
    • 2016
  • 최근 기후변화의 영향으로 시간에 따라 자료 및 통계적 특성이 변하는 비정상성이 다양한 수문자료에서 관측됨에 따라 비정상성 빈도해석에 대한 연구가 활발히 진행되고 있다. 비정상성 빈도해석에 사용되는 비정상성 확률 모형은 기존의 매개변수를 시간에 따라 변하는 공변량이 포함된 함수의 형태로 나타내기 때문에, 정상성 확률 모형에 비해 매개변수의 개수가 많으며 복잡한 형태를 가지게 된다. 따라서 본 연구에서는 비정상성 고려 시 모형이 복잡해짐에 따라 매개변수 및 확률 수문량의 불확실성이 어떻게 변하는지 알아보고자 하였다. 베이지안 방법은 매개변수 추정 및 확률 수문량의 산정 뿐 아니라 이에 대한 불확실성을 정량화할 수 있는 방법 중 하나이다. 따라서 베이지안 방법에서 매개변수 추정에 주로 쓰이는 Monte Carlo Markov Chain (MCMC) 방법 중 하나인 Metropolis-Hastings 알고리즘을 이용하여 정상성 및 비정상성 GEV모형에 대한 매개변수 및 확률수문량의 사후분포를 산정하였다. 산정된 사후분포의 사후구간을 통해 각 모형의 불확실성을 정량화하였으며, 계산된 불확실성의 비교를 통해 모형의 복잡성이 불확실성에 미치는 영향을 평가하였다.

  • PDF

불확실성을 고려한 비용-편익분석을 이용한 최적설계홍수량 산정 (Calculation of optimal design floods using cost-benefit analysis considering uncertainty)

  • 김상욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.275-275
    • /
    • 2020
  • 홍수빈도분석의 실용적 측면의 목적은 특정 재현기간에 대하여 발생 가능한 홍수량을 설계홍수량(design flood)으로 설정함으로써 댐, 제방, 배수시설, 하수관거 등의 치수기능을 가진 치수시설물이 설계홍수량 내에서 홍수로 인한 피해를 발생시키지 않도록 그 규모와 기능을 설계함에 있다. 이와 같은 중요한 기능을 담고 있는 홍수빈도분석의 기술적 절차는 해외 및 국내의 기존 연구자들에 의해 많은 연구가 진행된 바 있으나, 보다 적절한 설계홍수량 산정절차 및 설계홍수량의 최종 결정을 위한 기술적 수단의 제공을 위한 연구가 많은 연구자들에 의해 지금도 진행 중에 있다. 그러나 이와 같이 결정된 설계홍수량이 특정유역에서 발생될 수 있는 피해규모에 대해 얼마나 적정한 지의 여부를 과학적으로 판단하기 위한 연구는 많지 않다. 따라서 본 연구에서는 홍수빈도분석을 통해 산정된 설계홍수량의 적정성 여부를 과학적으로 판단하기 위해 비용-편익분석 기법을 이용하여 최적설계홍수량을 결정하였다. 특히 본 연구에서는 불확실성으로 발생되는 범위를 고려한 최적설계홍수량을 산정하기 위하여 Metropolis-Hastings 알고리즘을 사용하였으며, 자료의 종류에 따른 홍수량의 변화를 분석하기 위하여 년최대계열 및 부분시계열 자료를 각각 적용하였다. 한강유역에서 가평대성, 여주 및 한강대교 수위표 지점에서 측정된 자동관측유량장치에 의한 홍수량 자료를 활용하였으며, 최적설계홍수량이 기존 설계홍수량에 비해 크게 산정됨을 알 수 있었다.

  • PDF

정규확률변수 관측치열에 대한 베이지안 변화점 분석 : 서울지역 겨울철 평균기온 자료에의 적용 (Bayesian Change Point Analysis for a Sequence of Normal Observations: Application to the Winter Average Temperature in Seoul)

  • 김경숙;손영숙
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.281-301
    • /
    • 2004
  • 본 논문에서는 일변량 정규분포를 따르는 확률변수의 관측치열에 대한 변화점 문제(change point problem)를 고찰한다. 변화점의 존재유무, 그리고 만일 변화점이 존재한다면 어떠한 유형으로 발생했는지 즉, 변화점 발생 이후로 평균만 변화, 분산만 변화, 또는 평균과 분산 모두가 변화했는지를 밝힌다. 가능한 여러 유형의 변화모형들 가운데 최적의 모형을 선택하기 위해 베이지안 모형선택 기법을 이용하고, 선택된 모형에 내재된 모수를 추정 하기 위해 메트로폴리스-혜스팅스 알고리 즘을 포함한 깁스샘플링 을 이용한다. 이러한 방법론은 모의실험을 통해 검토되고, 또한 서울지역의 겨울철 평균기온 자료에 적용된다.