• 제목/요약/키워드: Metropolis-Hasting algorithm

검색결과 7건 처리시간 0.016초

Posterior density estimation for structural parameters using improved differential evolution adaptive Metropolis algorithm

  • Zhou, Jin;Mita, Akira;Mei, Liu
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.735-749
    • /
    • 2015
  • The major difficulty of using Bayesian probabilistic inference for system identification is to obtain the posterior probability density of parameters conditioned by the measured response. The posterior density of structural parameters indicates how plausible each model is when considering the uncertainty of prediction errors. The Markov chain Monte Carlo (MCMC) method is a widespread medium for posterior inference but its convergence is often slow. The differential evolution adaptive Metropolis-Hasting (DREAM) algorithm boasts a population-based mechanism, which nms multiple different Markov chains simultaneously, and a global optimum exploration ability. This paper proposes an improved differential evolution adaptive Metropolis-Hasting algorithm (IDREAM) strategy to estimate the posterior density of structural parameters. The main benefit of IDREAM is its efficient MCMC simulation through its use of the adaptive Metropolis (AM) method with a mutation strategy for ensuring quick convergence and robust solutions. Its effectiveness was demonstrated in simulations on identifying the structural parameters with limited output data and noise polluted measurements.

베이지안 비선형회귀모형의 선택과 진단 (Bayesian Mode1 Selection and Diagnostics for Nonlinear Regression Model)

  • 나종화;김정숙
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.139-151
    • /
    • 2002
  • 본 논문에서는 베이지안 기법을 이용한 비선형회귀모형의 선택법을 제안하였다. 베이즈요인에 기초한 이 방법은 주로 대표본의 경우에 이용되는 고전적 모형선택법에 비해 사전정보를 이용하는 측면과 비내포모형 및 소표본의 경우에 대해서도 효과적으로 사용될 수 있다는 장점을 가진다. 본 논문에서는 정보적 사전분포를 고려하였으며, 베이즈요인의 추정 방법으로 Laplace - Metropolis 추정 법을 제안하였다. 또한 MCMC 과정을 통해 추정된 모수의 수렴진단에 대해서도 고려하였다. 실제자료에 대한 최적의 모형선택 및 진단과정을 구체적으로 제시하였다.

확률난수를 이용한 공간자료가 생성과 베이지안 분석 (Computing Methods for Generating Spatial Random Variable and Analyzing Bayesian Model)

  • 이윤동
    • 응용통계연구
    • /
    • 제14권2호
    • /
    • pp.379-391
    • /
    • 2001
  • 본 연구에서는 관심거리가 되고 있는 마코프인쇄 몬테칼로(Markov Chain Monte Carlo, MCMC)방법에 근거한 공간 확률난수 (spatial random variate)생성법과 깁스표본추출법(Gibbs sampling)에 의한 베이지안 분석 방법에 대한 기술적 사항들에 관하여 검토하였다. 먼저 기본적인 확률난수 생성법과 관련된 사항을 살펴보고, 다음으로 조건부명시법(conditional specification)을 이용한 공간 확률난수 생성법을 예를 들어 살펴보기로한다. 다음으로는 이렇게 생성된 공간자료를 분석하기 위하여 깁스표본추출법을 이용한 베이지안 사후분포를 구하는 방법을 살펴보았다.

  • PDF

Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 이론적 배경과 사전분포의 구축 (At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Theoretical Background and Construction of Prior Distribution)

  • 김상욱;이길성
    • 한국수자원학회논문집
    • /
    • 제41권1호
    • /
    • pp.35-47
    • /
    • 2008
  • 저수분석(low flow analysis)은 수자원공학에서 중요한 분야 중 하나이며, 특히 저수량 빈도분석(low flow frequency analysis)의 결과는 저수(貯水)용량의 설계, 물 수급계획, 오염원의 배치 및 관개와 생태계의 보존을 위한 수량과 수질의 관리에 중요하게 사용된다. 그러므로 본 연구에서는 저수량 빈도분석을 위한 점 빈도분석을 수행하였으며, 특히 빈도분석에 있어서의 불확실성을 탐색하기 위하여 Bayesian 방법을 적용하고 그 결과를 기존에 사용되던 불확실성 탐색방법과 비교하였다. 본 논문의Ⅰ편에서는 Bayesian 방법 중 사전분포(prior distribution)와 우도함수(likelihood function)의 복잡성에 상관없이 계산이 가능한 Bayesian MCMC(Bayesian Markov Chain Monte Carlo) 방법과 Metropolis-Hastings 알고리즘을 사용하기 위한 여러 과정의 이론적 배경과 Bayesian 방법에서 가장 중요한 요소인 사전분포를 구축하고 이를 비교 및 평가하였다. 고려된 사전분포는 자료에 기반하지 않은 사전분포와 자료에 기반한 사전분포로써 두 사전분포를 이용하여 Metropolis-Hastings 알고리즘을 수행하고 그 결과를 비교하여 저수량 빈도분석에 합리적인 사전분포를 선정하였다. 또한 알고리즘의 수행과정에서 필요한 제안분포(proposal distribution)를 적용하여 그에 따른 알고리즘의 효율성을 채택률(acceptance rate)을 산정하여 검증해 보았다. 사전분포의 분석 결과, 자료에 기반한 사전분포가 자료에 기반하지 않은 사전분포보다 정확성 및 불확실성의 표현에 있어서 우수한 결과를 제시하는 것을 확인할 수 있었고, 채택률을 이용한 알고리즘의 효용성 역시 기존 연구자들이 제시하였던 만족스러운 범위를 가지는 것을 알 수 있었다. 최종적으로 선정된 사전분포는 본 연구의 II편에서 Bayesian MCMC방법의 사전분포로 이용되었으며, 그 결과를 기존 불확실성의 추정방법의 하나인 2차 근사식을 이용한 최우추정(maximum likelihood estimation)방법의 결과와 비교하였다.

Bayesian Hierarchical Model with Skewed Elliptical Distribution

  • 정윤식
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.5-12
    • /
    • 2000
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution and it is shown to be useful in such Bayesian meta-analysis. A general class of skewed elliptical distribution is reviewed and developed. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierarchical selection model and use Markov chain Monte Carlo methods to develop inference for the parameters of interest.

  • PDF

Bayesian Approach for Determining the Order p in Autoregressive Models

  • Kim, Chansoo;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.777-786
    • /
    • 2001
  • The autoregressive models have been used to describe a wade variety of time series. Then the problem of determining the order in the times series model is very important in data analysis. We consider the Bayesian approach for finding the order of autoregressive(AR) error models using the latent variable which is motivated by Tanner and Wong(1987). The latent variables are combined with the coefficient parameters and the sequential steps are proposed to set up the prior of the latent variables. Markov chain Monte Carlo method(Gibbs sampler and Metropolis-Hasting algorithm) is used in order to overcome the difficulties of Bayesian computations. Three examples including AR(3) error model are presented to illustrate our proposed methodology.

  • PDF

Classical and Bayesian studies for a new lifetime model in presence of type-II censoring

  • Goyal, Teena;Rai, Piyush K;Maury, Sandeep K
    • Communications for Statistical Applications and Methods
    • /
    • 제26권4호
    • /
    • pp.385-410
    • /
    • 2019
  • This paper proposes a new class of distribution using the concept of exponentiated of distribution function that provides a more flexible model to the baseline model. It also proposes a new lifetime distribution with different types of hazard rates such as decreasing, increasing and bathtub. After studying some basic statistical properties and parameter estimation procedure in case of complete sample observation, we have studied point and interval estimation procedures in presence of type-II censored samples under a classical as well as Bayesian paradigm. In the Bayesian paradigm, we considered a Gibbs sampler under Metropolis-Hasting for estimation under two different loss functions. After simulation studies, three different real datasets having various nature are considered for showing the suitability of the proposed model.