• Title/Summary/Keyword: Methylglyoxal

Search Result 64, Processing Time 0.02 seconds

The Algal Phosphorus Uptake and Growth by Copper and Methylglyoxal (구리와 Methylglyoxal에 의한 조류의 성장 및 인 흡수)

  • 이기태;이기성
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.4
    • /
    • pp.145-153
    • /
    • 1999
  • Effects of various concentrations of copper in solid fibrous form and methylglyoxal (MG) on phosphorus uptake and growth change of green algae Scenedesmus obliquus were studied. There was significant differences among cultures treated with various concentrations of copper and MG in growth of algae with parameters of cell numbers, photosynthetic rate and cellular morphology, and phosphorus uptake by cell. When the copper in media is treated with 25 mg or 50 mg per 100 ml of Bristol solution, the mean cell number of algae was 15.642${\times}$10$\^$6/ cells$.$ml$\^$-1/ and 12.986${\times}$10$\^$6/ cells$.$ml$\^$-1/, respectively, while those of algae in culture without copper was 18.486${\times}$10$\^$6/ cells$.$ml$\^$-1/. The mean cell area of 2450 ${\mu}$m$^2$, 1894 ${\mu}$m$^2$and 1697 ${\mu}$m$^2$in basic media, basic media with 25 mg of copper and basic media with 50 mg of copper was showed the inhibitory effect of copper on algal growth. The algal growth was stimulated by MG when the culture was treated with 25 mg of copper or without copper, while it was inhibited when the culture was treated with 50 mg of copper. It was considered that there was significant interaction between copper and MG on algal growth. The phosphorus concentration in algal medium treated with 25 mg or 50 mg of copper was 29.435 ppm and 26.224 ppm, respectively, while those of algae in culture without copper was 52.8 ppm, which shows that the application of copper in algal medium can prevent the availability of phosphorus to algal cell.

  • PDF

Effect of Polyamines on Formation of Adventitious Roots, Trichomes and Calli by NAA in Leaf Segment Cultures of Arabidopsis thaliana (애기장대 잎 절편 배양시 NAA 농도에 따른 부정근, 모용 및 캘러스 형성에 미치는 Polyamine의 영향)

  • 한태진;홍종필;김준철;임창진;진창덕
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.117-123
    • /
    • 2000
  • In order to study the role of polyamines on the formation of adventitious roots, trichomes and calli, the effects of putrescine, spermidine, spermine, cyclohexylamine (CHA) and methylglyoxal-bis(guanylhydrazone) (MGBG) were investigated in the leaf segment cultures from ecotype Columbia of Arabidopsis thaliana. When the leaf segments were cultured on the media for forming adventitious roots (0.1 mg/L NAA), trichomes (2.0 mg/L NAA) and calli (10.0 mg/L NAA), and then each cultures was treated with 1-100 mg/L of putrescine, spermidine and spermine, respectively. On the adventitious root-forming medium treated with polyamines the trichomes were induced with adventitious roots. And on the trichome-forming medium with polyamines calli were induced with trichomes. In orther hand each cultures was treated with 1-100 mg/L of CHA and MGBG, respectively. CHA promoted adventitious roots on the medium for adventitious roots, was not effected on media for trichomes and calli. MGBG inhibited adventitious roots, trichomes and calli in all cultures, and induced adventitious roots on medium for trichomes in high concentration.

  • PDF

Study of Methylglyoxal and Phosphorus Stress on Algae (조류의 Methylglyoxal과 인 Stress 연구)

  • 이기태
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.133-142
    • /
    • 1998
  • Effects of phosphorous (P) and methylglyoxal (MG) on the cell number, dry weight, chlorophyll content, photosynthetic and respiratory rate, phosphate uptake and protein content of green algae (Scenedesrnus obliquus) were studied. The algal cell number from the medium treated with 0.5-1.0 mM of MG at 1/2 P or 1/4 P concentration was significantly lower than those of algae treated :with full strength of phosphrous in medium. The inhibitory effect of MG on algal cell division was enhenced at low concentration of phosphorous in medium. At the beginning of logrithmic phase of algal growth, the mean dry weight of algae from the medium without MG-treatment in 1/2 P media was significantly higher than that of algae treated with MG. After logrithmic phase of growth cycle, the mean dry weight of algae from the medium with 1.0 mM of MG-treatment in 1/4 P media was significantly lower than that of algae treated with or without MG. At logrithmic phase of algal growth, there were significant differences in the chlorophyll content among all groups of tested algae with various concentrations of P and MG. At 15 days after inoculation, the mean chlorophyll content per algal cell from the media without MG-treatment in 1/2P was significantly higher than that of other cells from MG-treated media. The adverse effect of MG at concentration of 0.5-1.0mM in 1/2 and 1/4 P media on photosynthetic rate was observed. The mean photosynthetic rate of algal cell without P and MG treatment at 15 days after inoculation was significantly higher than that of MGtreated algae. After logarithmic phase, the algal cell treated with 0.5mM of MG with full strength of phosphorous showed significantly high respiratory rate than that of other cell groups. There were significant differences in mean phosphate uptake rate among all groups of Scenedesmus obliquus at logarithmic phase. At 12 days after inoculation, phosphate uptake rate per each algal cell from the basic media without MG and P treatment was rapidly reduced which shows early introduction to stationary phase.

  • PDF

Effects of crocin and metformin on methylglyoxal-induced reproductive system dysfunction in diabetic male mice

  • Khorasani, Maryam Kheirollahi;Ahangarpour, Akram;Khorsandi, Layasadat
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.3
    • /
    • pp.221-228
    • /
    • 2021
  • Objective: This study investigated the effect of crocin in methylglyoxal (MGO)-induced diabetic male mice. Methods: Seventy 1-month-old male NMRI mice weighing 20-25 g were divided into seven groups (n=10): sham, MGO (600 mg/kg/day), MGO+crocin (15, 30, and 60 mg/kg/day), MGO+metformin (150 mg/kg/day), and crocin (60 mg/kg/day). MGO was administered orally for 30 days. Starting on day 14, after confirming hyperglycemia, metformin and crocin were administered orally. On day 31, plasma and tissue samples were prepared for experimental assessments. Results: Blood glucose and insulin levels in the MGO group were higher than those in the sham group (p<0.001), and decreased in response to metformin (p<0.001) and crocin treatment (not at all doses). Testis width and volume decreased in the MGO mice and improved in the crocin-treated mice (p<0.05), but not in the metformin group. Superoxide dismutase levels decreased in diabetic mice (p<0.05) and malondialdehyde levels increased (p<0.001). Crocin and metformin improved malondialdehyde and superoxide dismutase. Testosterone (p<0.001) and sperm count (p<0.05) decreased in the diabetic mice, and treatment with metformin and crocin recovered these variables. Luteinizing hormone levels increased in diabetic mice (p<0.001) and crocin treatment (but not metformin) attenuated this increase. Seminiferous diameter and height decreased in the diabetic mice and increased in the treatment groups. Vacuoles and ruptures were seen in diabetic testicular tissue, and crocin improved testicular morphology (p<0.01). Conclusion: MGO increased oxidative stress, reduced sex hormones, and induced histological problems in male reproductive organs. Crocin and metformin improved the reproductive damage caused by MGO-induced diabetes.

Effects of Oxidative Stress on the Expression of Aldose Reductase in Vascular Smooth Muscle Cells

  • Kim, Hyo-Jung;Chang, Ki-Churl;Seo, Han-Geuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.271-278
    • /
    • 2001
  • Oxidative stress and methylglyoxal (MG), a reactive dicarbonyl metabolites produced by enzymatic and non-enzymatic reaction of normal metabolism, induced aldose reductase (AR) expression in rat aortic smooth muscle cells (SMC). AR expression was induced in a time-dependent manner and reached at a maximum of 4.5-fold in 12 h of MG treatment. This effect of MG was completely abolished by cyclohemide and actinomycin D treatment suggesting AR was synthesized by de novo pathway. Pretreatment of the SMC with N-acetyl-L-cysteine significantly down-regulated the MG-induced AR mRNA. Furthermore, DL-Buthionine-(S,R)-sulfoximine, a reagent which depletes intracellular glutathione levels, increased the levels of MG-induced AR mRNA. These results indicated that MG induces AR mRNA by increasing the intracellular peroxide levels. Aminoguanidine, a scanvenger of dicarbonyl, significantly down-regulated the MG-induced AR mRNA. In addition, the inhibition of AR activities with statil, an AR inhibitor, enhanced the cytotoxic effect of MG on SMC under normal glucose, suggesting a protective role of AR against MG-induced cell damages. These results imply that the induction of AR by MG may contribute to an important cellular detoxification of reactive aldehyde compounds generated under oxidative stress in extrahepatic tissues.

  • PDF

Glyoxalase 1 as a Therapeutic Target in Cancer and Cancer Stem Cells

  • Ji-Young, Kim;Ji-Hye, Jung;Seung-Joon, Lee;Seon-Sook, Han;Seok-Ho, Hong
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.869-876
    • /
    • 2022
  • Methylglyoxal (MG) is a dicarbonyl compound formed in cells mainly by the spontaneous degradation of the triose phosphate intermediates of glycolysis. MG is a powerful precursor of advanced glycation end products, which lead to strong dicarbonyl and oxidative stress. Although divergent functions of MG have been observed depending on its concentration, MG is considered to be a potential antitumor factor due to its cytotoxic effects within the oncologic domain. MG detoxification is carried out by the glyoxalase system. Glyoxalase 1 (Glo1), the ubiquitous glutathionedependent enzyme responsible for MG degradation, is considered to be a tumor promoting factor due to it catalyzing the removal of cytotoxic MG. Indeed, various cancer types exhibit increased expression and activity of Glo1 that closely correlate with tumor cell growth and metastasis. Furthermore, mounting evidence suggests that Glo1 contributes to cancer stem cell survival. In this review, we discuss the role of Glo1 in the malignant progression of cancer and its possible use as a promising therapeutic target for tumor therapy. We also summarize therapeutic outcomes of Glo1 inhibitors as prospective treatments for the prevention of cancer.

Effects of Methylglyoxal-bis (Guanylhydrazone) and Ethylene Synthesis Inhibitor on Adventitious Root formation from Soybean Cotyledon (Methylglyoxal-bis (Guanylhydrazone)와 에틸렌 생합성 저해제가 대두 자엽 부정근 형성에 미치는 영향)

  • 조형일;한태진;하건수;이순희;김응식
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.6
    • /
    • pp.327-332
    • /
    • 1994
  • The effect of methylglyoxal-bis (guanylhydrazone) (MGBG) and ethylene synthesis inhibitors on adventitious root formation from soybean cotyledon in relation to ethylene production and endogenous polyamine content was investigated. Cotyledon explants cultured on rooting medium formed numerous adventitious rook on the cut surfaces after 2 weeks of culture. However when cultured on rooting medium supplemented with MGBG, the root formation was strongly inhibited, its inhibitory effect was reserved when cultured on medium with MGBG + spermine, MGBG + CoCl$_2$ and MGBG + spermine+CoC1$_2$. A slight reversion of the rooting inhibition was observed in 10$^{-3}$ M MGBG +10$^{-5}$ M spermine treatment, whereas it caused a significant effect in 10$^{-3}$ M MGBG +10$^{-4}$ M treatment .Ethylene production and endogenous polymine content was investgated in 10$^{-3}$ M MGBG , 10$^{-3}$ M MGBG +10$^{-5}$ Mspermine, 10$^{-3}$ M MGBG +10$^{-4}$ M CoCl$_2$and 10$^{-3}$ M MGBG +10$^{-5}$ M spermine +10$^{-4}$ M CoCl$_2$treatments. Ethylene production highest in 10$^{-3}$ M MGBG +10$^{-5}$ M spermine treatment was higher than control. In 10$^{-3}$ M MGBG +10$^{-5}$ M spermine + 10$^{-4}$ M CoCl$_2$ treatment, ethilene production was lowest, whereas polyamine level was highest.

  • PDF

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF

Purification and Characterization of Glyoxalase I from Pleurotus ostreatus (Pleurotus ostreatus에서 분리된 Glyoxalase I의 특성)

  • Kim, Seong-Tae;Yang, Kap-Seok;Seok, Yeong-Jae;Huh, Won-Ki;Kang, Sa-Ouk
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.315-321
    • /
    • 1994
  • Glyoxalase I was purified 2,294-fold from Pleurotus ostreatus by S-hexylglutathione affinity chromatography, Sephadex G-150 gel filtration chromatography and DEAE-sepharose A-50 CL-6B ion exchange chromatography with an overall yield of 21.7%. The molecular mass determined by gel filtration was found to be approx. 34 kDa. SDS-PAGE revealed that the enzyme consists of two identical subunits with a molecular mass of approx. 17 kDa. The K sub(m) values of this enzyme for methylglyoxal and phenylglyoxal were 0.39 mM and 0.22 mM, respectively. And this enzyme had a strong affinity for L-xylosone and hydroxypyruvaldehyde. The enzyme showed its optimal activity at pH 6.5-7.5 and at $40^{\circ}C$. $^1H$-NMR spectroscopic analysis of enzymic reaction showed that this enzyme catalyzes intramolecular proton transfer.

  • PDF