• Title/Summary/Keyword: Methyl anthranilate

Search Result 11, Processing Time 0.026 seconds

New Aromatic Amides from Aconitum pseudo-laeve var. erectum (진범 전초의 새로운 aromatic amides 성분)

  • Kim, Dae-Geun;Gwak, Jong-Hwan;Gwon, Hak-Cheol;Song, Gi-Won;Ji, Ok-Pyo;Lee, Gang-No
    • YAKHAK HOEJI
    • /
    • v.40 no.4
    • /
    • pp.418-421
    • /
    • 1996
  • From the ethanol extract of the whole plant of Aconitum pseudo-laeve var. erectum Nakai, three new aromatic amides, methyl-N-acetyl anthranilate, methyl-N-(3-ethox ycarbonylpropionyl)anthranilate, methyl-N-(3-methoxycarbonylpropionyl) anthranilate were isolated and characterized on the basis of spectral data.

  • PDF

Synthesis of Methylated Anthranilate Derivatives Using Engineered Strains of Escherichia coli

  • Lee, Hye Lim;Kim, Song-Yi;Kim, Eun Ji;Han, Da Ye;Kim, Bong-Gyu;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.839-844
    • /
    • 2019
  • Anthranilate derivatives have been used as flavoring and fragrant agents for a long time. Recently, these compounds are gaining attention due to new biological functions including antinociceptive and analgesic activities. Three anthranilate derivatives, N-methylanthranilate, methyl anthranilate, and methyl N-methylanthranilate were synthesized using metabolically engineered stains of Escherichia coli. NMT encoding N-methyltransferase from Ruta graveolens, AMAT encoding anthraniloyl-coenzyme A (CoA):methanol acyltransferase from Vitis labrusca, and pqsA encoding anthranilate coenzyme A ligase from Pseudomonas aeruginosa were cloned and E. coli strains harboring these genes were used to synthesize the three desired compounds. E. coli mutants (metJ, trpD, tyrR mutants), which provide more anthranilate and/or S-adenosyl methionine, were used to increase the production of the synthesized compounds. MS/MS analysis was used to determine the structure of the products. Approximately, $185.3{\mu}M$ N-methylanthranilate and $95.2{\mu}M$ methyl N-methylanthranilate were synthesized. This is the first report about the synthesis of anthranilate derivatives in E. coli.

A New Aromatic Amide from the Roots of Aconitum pseudolaeve var. erectum (진범의 새로운 Aromatic Amide 성분)

  • Lee, Hyun-Sun;Ahn, Young-Kook;Han, Dae-Suk
    • Korean Journal of Pharmacognosy
    • /
    • v.20 no.4
    • /
    • pp.215-218
    • /
    • 1989
  • A new aromatic amide isolated from the hexane soluble fraction of the root of Aconitum pseudolaeve var. erectum has been characterized as methyl-N-(2-acetaminobenzoyl) anthranilate on the basis of spectroscopic data, and a monoglyceride was also isolated and identified as glycerol-1-hexadecanoate from the fraction.

  • PDF

Studies on Korean Aconitum Species(V). -On the Chemical Constituents of Aconitum pseudolaeve var. erectum- (한국산(韓國産) 부자류(附子類) 생약(生藥)에 관한 연구 (V). -진범 지하부의 성분(成分)에 대하여-)

  • Lee, Hyun-Sun;Chung, Bo-Sup
    • Korean Journal of Pharmacognosy
    • /
    • v.20 no.1
    • /
    • pp.6-9
    • /
    • 1989
  • A new aromatic amide, methyl-N-(3-carbamoylpropionyl) anthranilate was isolated for the first time as a natural compound and one known $C_{19}-diterpene\;alkaloid$, avadharidine was also obtained from the root of Aconitum pseudolaeve var. erectum. The\;LD_{50}$ values of water extract and MeOH extract of the root of Aconitum pseudolaeve var. erectum in mice were 1. 23 g (13. 6 g crude drug) and 0. 77 g(5. 13 g crude drug)/kg, p.o., respectively.

  • PDF

Methylanthranilate, a Food Fragrance Attenuates Skin Pigmentation through Downregulation of Melanogenic Enzymes by cAMP Suppression

  • Heui-Jin Park;Kyuri Kim;Eun-Young Lee;Prima F. Hillman;Sang-Jip Nam;Kyung-Min Lim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.231-239
    • /
    • 2024
  • Methyl anthranilate (MA) is a botanical fragrance used in food flavoring with unexplored potential in anti-pigment cosmetics. MA dose-dependently reduced melanin content without affecting cell viability, inhibited dendrite elongation and melanosome transfer in the co-culture system of human melanoma cells (MNT-1) and human keratinocyte cell line (HaCaT), and downregulated melanogenic genes, including tyrosinase, tyrosinase-related protein 1 and 2 (TRP-1, TRP-2). Additionally, MA decreased cyclic adenosine monophosphate (cAMP) production and exhibited a significant anti-pigmentary effect in MelanodermTM. These results suggest that MA is a promising anti-pigmentary agent for replacing or complementing existing anti-pigmentary cosmetics.

Tissue Culture Studies of Anthranilate Synthase the Tryptophan Biosynthetic Control Enzyme

  • Widholm, Jack.M.
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • Experiments initiated 30 years ago to obtain selectable markers have led to a series of studies of Trp biosynthesis and anthranilate synthase (AS) the control enzyme using largely plant tissue cultures since they have experimental properties that can be readily exploited. Enzymological and compound feeding studies provided evidence that AS is the control point in the Trp biosynthesis branch and that altering the AS feedback control by the selection of mutants resistant to the Trp analog 5-methyl-tryptophan (5MT) can lead to the overproduction of this important amino acid. Plants regenerated from these Trp overproducing lines of most species also had high free Trp levels but Nicotiana tabaum (tobacco) plants expressed the feedback altered AS only in cultured cells and not in the regenerated plants. further tests by transient and stable expression of the cloned promoter for the naturally occurring tobacco feedback-insensitive AS, denoted ASA2, confirmed the tissue culture specific nature of the expression control. The 5MT caused by the expression of a feedback-insensitive AS from tobacco has been used to select protoplast fusion hybrids with several species since the resistance is expressed dominantly. Recently the ASA2 gene has been used successfully as a selectable marker to select transformed Astragalus sinicus and Glycine max hairy roots induced by Agrobactetium rhizogenes. These results show that the ASA2y-subunit can interact with the y-subunit of another species to form active feedback-insensitive enzyme that may be useful for selecting transformed cells. Plastid DNA transformation of tobacco has also effectively expressed ASA2 in the compartment in which Trp biosynthesis is localized in the cell.

  • PDF

Degradation of $^{14}C-bifenox$ in Soils under Anaerobic Conditions (혐기적 조건의 토양에서 제초제 $^{14}C-bifenox$의 분해)

  • Kwak, Hyung-Ryul;Lee, Kang-Bong;Kim, Kil-Yong;Kim, Yong-Woong;Suh, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.300-308
    • /
    • 2000
  • The degradation of herbicide $^{14}C-bifenox$ was studied in soils under anaerobic conditions. $^{14}C-bifenox$ was treated in silty loam and sandy loam soils, respectively at a rate of 2.1 mg/kg, and the soil was incubated under anaerobic conditions at $25^{\circ}C$ for 180 days. The mineralization, solvent extractable and non-extractable residues, degradation products of bifenox were investigated during the experiments. The relative amounts of $^{14}CO_2$ were 1.97 and 0.9% of applied $^{14}C$ in silty loam and sandy loam soils, respectively. The non-extractable residues of sandy loam soil increased dramatically up to 79.12% of applied $^{14}C$, and were higher than those of silt loam soil, suggesting physico-chemical properties and especially organic matter contributed to the difference of $^{14}C$ between two soils. The non-extractable residues were formed mainly humin fraction and increased with time. The major metabolites were nitrofen, 5-(2,4-dichlorophenoxy)-2-Nitrobenzoate, 2,4-dichlorophenoxy aniline and methyl 5-(2,4-dichlorophenoxy) anthranilate by GC/MS analysis. From the results of volatilization, mineralization and degradation of bifenox, bifenox was stable chemically and biologically in soil.

  • PDF

Selection of 5-Methyltryptophan and S-(2-Aminoethyl)-L-Cysteine Resistant Microspore-Derived Rice Cell Lines Irradiated with Gamma Rays

  • Kim, Dong-Sub;Lee, In-Sok;Jang, Cheol-Seong;Hyun, Do-Yoon;Lee, Sang-Jae;Seo, Yong-Weon;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • Microspore-derived cell lines resistant to 5-methyltryptophan (5MT, a tryptophan analog) or S-(2-aminoethyl)-L-cysteine (AEC, a Iysine analog) were selected in rice by in vitro mutagenesis. For selection of 5MT or AEC resistant cell lines, suspension-cultured cells were irradiated with gamma rays. Thirteen 5MT resistant cell lines were selected and they were able to grow stably at 2 times higher 5MT concentration. A feedback insensitive form of anthranilate synthesis, the pathway specific control enzyme for tryptophan synthesis, was detected from the 5MT resistant lines. Contents of the free amino acids in five resistant lines (MR12-1 to MR12-5) showed a 7.4 to 46.6 times greater level than that in the control culture. Tryptophan, phenylalanine, and tyrosine levels in the shikimate pathway were 28.1 and 22.5 times higher in MR12-3 and MR12 4, respectively, than that measured in the control cells. Four AEC resistant cell lines were isolated from cultures grown on medium containing 1 mM AEC, They were able to grow stably with 2 mM AEC, while sensitive calli were inhibited by 0.5 mM AEC. Aspartate kinase activities of the resistant lines were insensitive to the natural inhibitor, Iysine, and accumulated 2.2 to 12.9-fold higher levels of free Iysine than that of the control cells. Especially, the levels of aspartate, asparagine, and methionine in the aspartate pathway showed higher accumulation in the AEC resistant lines than that in the control cells.

Minority report; Diketopiperazines and Pyocyanin as Quorum Sensing Signals in Pseudomonas aeruginosa (Minority report; Pseudomonas aeruginosa의 정족수 인식(쿼럼 센싱) 신호물질로써의 Diketopiperazines과 Pyocyanin)

  • Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • Pseudomonas aeruginosa is an opportunistic human pathogen, causing a wide variety of infections including cystic fibrosis, microbial keratitis, and burn wound infections. The cell-to-cell signaling mechanism known as quorum sensing (QS) plays a key role in these infections and the QS systems of P. aeruginosa have been most intensively studied. While many literatures that introduce the QS systems of P. aeruginosa have mostly focused on two major acyl-homo serine lactone (acyl-HSL) QS signals, N-3-oxododecanoyl homoserine lactone (3OC12) and N-butanoyl homoserine lactone (C4), several new signal molecules have been discovered and suggested for their significant roles in signaling and virulence of P. aeruginosa. One of them is PQS (Pseudomonas quinolone signal; 2-heptyl-3-hydroxy-4-quinolone), which is now considered as a well-characterized major signal meolecule of P. aeruginosa. In addition, recent researches have also suggested some more putative signal molecules of P. aeruginosa, which are diketopiperazines (DKPs) and pyocyanin. DKPs are cyclic dipeptides and structurally diverse depending on what amino acids are involved in composition. Some DKPs from the culture supernatant of P. aeruginosa are suggested as new diffusible signal molecules, based on their ability to activate Vibrio fischeri LuxR biosensors that are previously considered specific for acyl-HSLs. Pyocyanin (1-hydroxy-5-methyl-phenazine), one of phenazine derivatives produced by P. aeruginosa is a characteristic blue-green pigment and redox-active compound. This has been recently suggested as a terminal signaling factor to upregulate some QS-controlled genes during stationary phase under the mediation of a transcription factor, SoxR. Here, details about these newly emerging signaling molecules of P. aeruginosa are discussed.

Comparative Study on the Composition of Floral Volatile Components in the Flowering Stages of Robinia pseudoacacia L. (아까시나무(Robinia pseudoacacia L.) 꽃의 개화 단계별 향기성분 조성 비교)

  • Jung, Je Won;Lee, Hyun Sook;Noh, Gwang Rae;Lee, Andosung;Kim, Moon Sup;Kim, Sea Hyun;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • Floral scent emitted from many plants is the critical factors for pollinator attraction and defense for adaptation in environments. The fragrance components of flowers are different in composition by geographical origins, climate factors and the development stages of flowers. In the present study, we investigated the volatile-floral compounds in flowers of Robinia pseudoacacia L. and defined the chemical contribution for flowering periods. The volatile compounds analysis was performed by gas chromatography with mass selective detector after solid phase microextraction (SPME). We reported different compositional features of fragrance compounds according to flowering periods. The abundant compounds identified in stage 1 were ${\alpha}$-pinene (66.80%) and ${\beta}$-pinene (26.53%). Those of the stage 2 were (Z)-${\beta}$-ocimene (37.57%), ${\alpha}$-pinene (15.16%), benzaldehyde (16.63%), linalool (12.13%). The volatiles of stage 3 comprised an abundance of (Z)-${\beta}$-ocimene (64.94%), ${\alpha}$-pinene (9.84%), linalool (8.92%), benzaldehyde (1.71%). Leaf volatiles were distinct from those in the reproductive plant parts by their high relative amount of (E)-${\beta}$-ocimene (23.50%) and (Z)-3-Hexenyl acetate (27.87%). Differences in flower scents of the different stages and leaves are discussed in light of biochemical constraints on volatile chemical synthesis and of the role of flower scent in evolutionary ecology of R. pseudoacacia.