• Title/Summary/Keyword: Methyl Donors

Search Result 20, Processing Time 0.025 seconds

Distinct Mechanisms of DNA Sensing Based on N-Doped Carbon Nanotubes with Enhanced Conductance and Chemical Selectivity

  • Kim, Han Seul;Lee, Seung Jin;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.415.1-415.1
    • /
    • 2014
  • Carrying out first-principles calculations, we study N-doped capped carbon nanotube (CNT) electrodes applied to DNA sequencing. While we obtain for the face-on nucleobase junction configurations a conventional conductance ordering where the largest signal results from guanine according to its high highest occupied molecular orbital (HOMO) level, we extract for the edge-on counterparts a distinct conductance ordering where the low-HOMO thymine provides the largest signal. The edge-on mode is shown to operate based on a novel molecular sensing mechanism that reflects the chemical connectivity between N-doped CNT caps that can act both as electron donors and electron acceptors and DNA functional groups that include the hyperconjugated thymine methyl group[1].

  • PDF

Multi-Electron Donor Organic Molecules Containing Hydroquinone Methyl-Ether as Redox Active Units

  • Khandelwal, Manish;Hwang, In-Chul;Nair, Prakash Chandran R.;Lee, Jung-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1190-1198
    • /
    • 2012
  • Three hydroquinone dimethyl ether derivatives have been synthesized and characterized by X-ray diffraction. The electron donating properties were evaluated by using UV-vis spectroscopy, cyclic voltammetry and by ESR spectroscopy. The microcrystalline cation-radical salts of the three donor molecules were also isolated by using antimony pentachloride, a single electron Lewis acid oxidant.

N-Alkylatin of Secondary Amines in Nickel(II) Complexes of Polyaza Macrotricyclic Ligands

  • Suh, Paik-Myunghyun;Kim, Myung-Jin;Kim, Hyun-Kyung;Oh, Kye-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.80-83
    • /
    • 1992
  • The secondary nitrogen donors of the Ni(II) complexes of macrotricyclic ligands 8-methyl-1,3,6,8,10,13,15-heptaazatricyclo $[13.1.1.1^{13,15}]$octadecane (A) and 1,3,6,9,11,14-hexaazatricyclo $[12.2.1.1^{6,9}]$octadecane (B) are N-alkylated and the Ni(II) complexes of $N-Me_2A,\;N-Et_2A,\;and\;N-Me_2B$ are obtained. The Ni(II) complexes of $N-Me_2A\;and\;N-Et_2A$ are stable in acidic aqueous solutions while that of $N-Me_2B$ decomposes relatively rapidly. The N-alkylation leads to the decrease in the ligand field strength as well as an anodic shift in both of the oxidation and the reduction potentials of the Ni(II) complexes.

Syntheses of Mannosidic Disaccharides from Derivatives of Ethylthio $\alpha$-D-Mannopyranoside

  • 윤미경;신영숙;윤신숙;전근호;Shin, Jeong E. Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1239-1244
    • /
    • 1998
  • Derivatives of ethylthio α-D-mannopyranoside as glycosyl donors are compared in coupling efficiency and stercoselectivity with varying thiophilic promoters from methyl triflate (MeOTf), dimethyl(methylthio)sulfonium triflate (DMTST) to iodonium dicollidine perchlorate (IDCP), solvents and glycosyl acceptors. IDCP was the most efficient promoter in coupling of perbenzylated ethylthio-α-D-mannopyranosides (1 and 2), giving α-Dmannosyl disaccharides preferentially, whereas inactive in coupling of 4,6-O-benzylidene derivatives 3 and 4. MeOTf and DMTST promoted coupling of 4,6-O-benzylidene derivatives 3 and 4, but P-D-mannopyranosyl disaccharides were formed preferentially. Coupling reaction was retarded as solvent polarity decreased.

Photoaddition Reactions of Silyl Ketene Acetals with Aromatic Carbonyl Compounds: A New Procedure for β-Hydroxyester Synthesis

  • Yoon, Ung-Chan;Kim, Moon-Jung;Moon, Jae-Joon;Oh, Sun-Wha;Kim, Hyun-Jin;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1218-1242
    • /
    • 2002
  • Photochemical reactions of aromatic carbonyl compounds with silyl ketene acetals have been explored. Irradiation of acetonitrile or benzene solutions containing aryl aldehydes or ketones in the presence of silyl ketene acetals is observed to promo te formation of ${\beta}-hydroxyester$, 2,2-dioxyoxetane and 3,3-dioxyoxetane products. The ratios of these photoproducts, which arise by competitive single electron transfer (SET) and classical Paterno-Buchi mechanistic pathways, is found to be dependent on the degree of methyl-substitution on the vinyl moieties of the ketene acetals in a manner which reflects expected alkyl substituent effects on the oxidation potentials of these electron rich donors. An analysis of the product distribution arising by irradiation of a solution containing butyrophenone (6) and the silyl ketene acetal 9, derived from methyl isobutyrate, provides an estimate of the rate constants for the competitive Norrish type Ⅱ, SET and Paterno-Buchi processes occuring. Finally, sequences involving silyl ketene acetal-aryl aldehyde or ketone photoaddition followed by 2,2-dioxyoxetane hydrolysis represent useful procedures for Claisen-condensation type, ${\beta}-hydroxyester$ synthesis.

Chirality Conversion of Dipeptides in the Schiff Bases of Binol Aldehydes with Multiple Hydrogen Bond Donors

  • Park, Hyun-Jung;Hong, Joo-Yeon;Ham, Si-Hyun;Nandhakumar, Raju;Kim, Kwan-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.409-414
    • /
    • 2009
  • Novel binol aldehydes derivatized at 2' hydroxy position with both uryl and acetamide groups (2), and diuryl groups (3) have been synthesized. Both were designed for streospecific binding and chirality conversion of general dipeptides with support of multiple hydrogen bonding donor sites in the receptors. The receptors, 2 and 3, converted the chirality of N-terminal amino acids of peptides such as Ala-Gly, Met-Gly, Leu-Gly and His-Gly with stereoselectivity on D-form over L-form. The stereoselectivity ratios were in the range of 5-11, somewhat higher than those of the binol receptor with mono uryl group (1). The DFT calculation at the B3LYP/6-31G$^*$//MPWB1K/6-31G$^*$ level revealed that 3-D-Ala-Gly was 2.2 kcal/mol more stable than 3-L-Ala-Gly. The considerable steric hindrance between the methyl group of the alanine and the imine CH moiety of the receptor seems to be the main contributing factor for the thermodynamic preference.

A Study on Charge-Transfer Complexes of Naphthalene and Derivatives of Naphthalene with Chloranil (나프탈렌 및 그 유도체들과 클로라닐의 전하이동 착물에 관한 연구)

  • Jung-Dae Moon;Chun-Hag Jang
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.335-343
    • /
    • 1993
  • The maximum absorption wavelengths of charge-transfer complexes of naphthalene, ${\alpha}-and{\beta}-methyl$ naphthalene and 1,2-, 2,3-and 2,6-dimethyl naphthalene with chloranil have been measured with a UV spectrophotometer in ethylene chloride, methylene chloride, and chloroform at 10, 15, 20, and 25$^{\circ}C$. This absorption band was interpreted as the charge transfer band of a 1 : 1 molecular complex, and the maximum absorption wavelength was changed as a function of solvent and temperature. Their formation constants (K$_f$) were decreased with the polarity of solvent and the increase of temperature. Thus, the influences of solvent and temperature on the formation constant have been discussed as consideration of thermodynamic properties, and the electronic and steric effects of electron donors on formation constant have been also discussed.

  • PDF

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

Role of Nitric Oxide Produced During Endotoxic Shock in Sympathetic Nervous Function (Endotoxin에 의해 생성된 혈관의 nitric oxide가 교감신경계에 미치는 영향)

  • 박관하
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.195-201
    • /
    • 1996
  • Endotoxic shock causes death in humans and animals via extreme hypoperfusion of peripheral organs. A massive production of nitric oxide (NO) both from the endothelical cells and smooth muscle cells has been proposed as a possible mechanism in this process. Since NO attenuated the contractility to vasoconstricting agents such as norepinephrine (NE) by directly acting on the smooth muscle cells, this mechanism was considered mainly as a postsynaptic mechanism. In this research it was investigated whether NO, thus released, also participates in the presynaptic events for the regulation of vascular tone in endotoxic shock. The role of NO was studied by adding NO donors or NO synthase inhibitor $N^\omega $methyl-L-arginine (NMA) in stimulated sympathetic nerves of the mesenteric vascular bed and the Langendorff heart of rats. Sodium nitroprusside (SNP), an NO donor, reduced the pressor responses of isolated mesenteric artery either to electrical stimulation or exogenously administered phenylephrine (PE). In this mesentery, although neither agent influenced NE release, in the presence of the adrenergic $\alpha_2$-receptor antagonist yohimbine, elecrical stimulation-evoked NE release was augumented by SNP. In the heart SNP facilitated the NE release induced by electrical stimulation, while NMA had no effect. From these results it is proposed that there exists a local reflex phenomenon in the junction between the sympathetic nerve terminals and the smooth muscle of resistance blood vessels; by which sympathetic responses are reduced by NO at the postjunctional level while NO facilitates NE release contributing to augumentation of sympathetic tone. All these facts suggest that NO produced during endotoxic shock has dual effects: whereas NO blunts the vasoconstrictive activity of NE at the postsynaptic level, NO presynaptically facilitates the release of NE from sympathetic nerve terminals.

  • PDF

Formation of Cadmium(II) Nitrate Complexes with Macrocycles

  • Ho-Doo Kim;Hak-Jin Jung;Oh-Jin Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.561-567
    • /
    • 1993
  • The twelve macrocycle (L) complexes of cadmium(II) nitrate have been synthesized: $CdL(NO_3)_2$. All the complexes have been indentified by elemental analysis, electric conductivity measurements, IR and NMR spectroscopic techniques. The molar electric conductivities of the complexes in water and acetonitrile solvent were in the range of 236.8-296.1 $cm^2{\cdot}mol^{-1}{\cdot}ohm^{-1}$ at 25$^{\circ}$C. The characteristic peaks of macrocycles affected from Cd(II) were shifted to lower frequencies as compared with uncomplexed macrocycles. A complex with 1,4,8,11-tetrakis(methylacetato)-1,4,8,11-tetraaza cyclodecane (L4) exhibited two characteristic bands such as strong stretching (1646 $cm^{-1})$, and weaker symmetric stretching band (1384 $cm^{-1})$. NMR studies indicated that all nitrogen donor atoms of macrocycles have greater affinity to cadmium(II) metal ion than do the oxygen atoms. The $^{13}$C-resonance lines of methylene groups neighboring the donor atom such as N and S were shifted to a direction of high magnetic field and the order of chemical shifts were $L_1 < L_2 < L_3 < L_6 < L_4$. Also the chemical shifts values were larger than those of methylene groups bridgeheaded in side-armed groups. This result seems due to not only the strong interaction of Cd(Ⅱ) with nitrogen donors according to the HSAB theory, but weak interaction of Cd(Ⅱ) and COO- ions or sulfur which is enhanced by the flexible methylene spacing group in side-armed groups. Thus, each additional gem-methyl pairs of L_3, L_4\;and\; L_6$ macrocycles relative to $L_1, L_2,\;and\;L_5$ leads to an large enhancement in Cd(II) affinity. ^{13}C$-NMR spectrum of the complex with $L_{12}$ (1,5,9,13-tetracyclothiacyclohexadecane-3,11-diol) reveals the presence of two sets of three resonance lines, and intensities of the each resonance line have the ratio of 1 : 2 : 2. This molecular conformation is predicted as structure of tetragonal complex to be formed by coordinating two sulfur atoms and the other two sulfur atoms which is affected by OH-groups.