• Title/Summary/Keyword: Methyl Cellulose

Search Result 191, Processing Time 0.018 seconds

Preparation and Characterization of Antimicrobial Films Using Water Soluble Polymer (수용성 고분자를 이용한 항균 필름의 제조 및 특성 연구)

  • Choi, Jun Ho;Choi, Yoo Sung;Oh, Il Hong;Kim, Maeng Su;Lee, In Hwa
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • This study was performed to develop antimicrobial films using polyvinyl alcohol and methyl cellulose. Methyl cellulose and polyvinyl alcohol films plasticized with PEG(polyethylene glycol) were prepared by solvent casting process under addition of 0.025~1.0 wt% ampicillin and 0.1~1.0 wt% streptomycin as an antimicrobial agent. The mechanical properties of prepared films were examined by universal testing machine(UTM). Tensile strength of methyl cellulose films was 15.44~21.70 $N/mm^2$. Tensile strength of PVA(15 wt%) film was 20.2~51.5 $N/mm^2$, and the tensile strength of the antimicrobial films were decreased linearly with increasing the antibiotic loading amount up to 1 wt%. Antimicrobial activities of PVA and methyl cellulose films containing ampicillin and streptomycin through the disc diffusion test for the Staphylococcus aureus and Escherichia coli. The antimicrobial activity of methyl cellulose films and PVA containing ampicillin were higher than that of containing streptomycin methyl cellulose films. The results indicate the films may be a proper materials for antimicrobial packing applications.

Strengthening Treatment of Aged Hanji with Water Soluble Polymers (수용성 고분자를 이용한 열화한지의 보강처리)

  • Kim, Kang-Jae;Lee, Min-Hyung;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.1-10
    • /
    • 2011
  • In this study, 13 water soluble polymers(6 natural polymer, 7 synthetic polymer) were treated on Hanji. Mechanical properties, morphology and oxidation index with thermal aging were measured on the aged Hanji, dewaxed Hanji and polymer treated Hanji. 3 natural polymer(such as CMC, EC, MC) and 3 synthetic polymers(such as PVA 1500, 2000, PEG 1500) treated Hanji had higher strength than other polymer treated Hanji. The oxidation index of 3% methyl cellulose solution treated Hanji did a little increase with thermal aging. Finally, methyl cellulose was found to be the most efficient method for strengthening the dewaxed Hanji. The best aging safety and thermal stability were obtained at the methyl cellulose 3% water solution.

Study of Conservational Methods for the Old Printing Papers (열화된 인쇄지의 보존처리방안 연구)

  • Lee, Kwi-Bok;Hyeon, Hye-Won;Jung, Sun-Young;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Printing papers published in between 1950's and 1990's were treated with three methods such as distilled water washing, $CaCO_3$ solution washing and methyl cellulose solution coating for improving their conservational properties. Accelerated aging with $80^{\circ}C$ and 80% RH for 14 days was applied to the testing papers. Results showed that distilled water and $CaCO_3$ washing kept increased pH even after accelerated aging, but did not improve folding endurances for 1950's-60's papers. Methyl cellulose treatment did not increased pH of the old papers, but increased folding endurances remarkably for 1950's-60's papers even after accelerated aging. It suggests that methyl cellulose treatment after $CaCO_3$ washing should give improvements both in pH and folding endurance.

A Study on The Effect of Humidity and Temperature of Hydroxy Propyl Methyl Cellulose Dust (Hydroxy Propyl Methyl Cellulose 분진의 습도와 온도에 대한 영향성 연구)

  • Lim Woo-Sub;Mok Yun-Soo;Choi Jae-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.65-69
    • /
    • 2004
  • This study was performed with Hartmann type dust explosion apparatus and Godbert-Greenwald furnace apparatus in order to research the effect of temperature and humidity affecting LEL, minimum ignition temperature of Hydroxy Propyl Methyl Cellulose. The experimental determinations in the range between $20^{\circ}C\;and\;60^{\circ}C$ of temperature was not affected $LEL(180g/m^3)$ but LEL showed $200g/m^3\;and\;250g/m^3\;at\;80^{|circ}C\;and\;100^{\circ}C$. As the change of humidity LEL was $180g/m^3\;for\;50\%,\;200g/m^3\;for\;60\%\;and\;250g/m^3\;for\;70\%$ but dust explosion didn't occur over $80\%$. The ignition temperature of HPMC dust clouds was increased as increasing of humidity. So, the minimum ignition temperatures at $50\%,\;60\%,\;70\%\;80\%$ of humidity was $363^{\circ}C,\;375^{\circ}C,\;397^{\circ}C,\;405^{\circ}C$.

Effects of Gums , Fats and Glutens Adding on Processing and Quality of Milled Rice Bread (Gum 질, 지방질 및 활성 Gluten 첨가에 따른 쌀빵 특성 비교)

  • Kang, Mi-Young;Choi, Young-Hee;Choi, Hae-Chune
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.700-704
    • /
    • 1997
  • Fermentation and morphological characteristics of rice bread baked with gums, lipids, and glutens added dough were investigated to establish the standard recipe for rice bread processing. All gum-type additives 1ed to successful formation of rice bread. Hydroxypropyl-methyl-cellulose among tested gums showed the best volume expansion and successful formation of rice bread. Addition of vegetable oils gave better effect on increasing the specific loaf volume and tenderness of rice bread than addition of the solid-type lipids such as margarin and lard during rice bread processing. Dry heating during baking of the rice bread gave more desirable effect on specific gravity of rice bread than wet heating. High-amylose rices such as Suweonjo, AC 27, and IR 44 showed better formation of rice bread in the case of adding 3% hydroxypropyl-methyl-cellulose, while Suweon 230 and Pusa-33-30 showed slightly better formation of rice bread in the case of adding the gluten and strong hard flour. The glutinous rice Hangangchalbyeo failed to the formation of rice bread in both cases of adding 3% hydroxypropyl-methyl-cellulose and the gluten and hard flour.

  • PDF

A Study on The Spontaneous Ignition of a Hydroxy Propyl Methyl Cellulose Dust Cloud (Hydroxy Propyl Methyl Cellulose 분진의 운상자연발화에 관한 연구)

  • Lim, Woo-Sub;Mok, Yun-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.137-140
    • /
    • 2004
  • The minimum ignition temperature at which the dust cloud can spontaneously ignite is considered to be very important in industries to prevent explosion occurring in hot surfaces. This paper has dealt with the experimental study of the determination of minimum ignition temperature of Hydroxy Propyl Methyl Cellulose (HPMC) dust cloud. We have used the Godbert-Greenwald Furnace Apparatus to determine the ignition temperature and limiting oxyten concentration for dust could. The experimental determinations on the minimum ignition temperature were carried out with various particle size with nominal diameters 45, 75 and 106${\mu}m$. The limiting oxygen concentration of dust cloud was determinated for the smaller size(45${\mu}m$) HPMC. Minimum ignition temperature of dust cloud was at 364$^{\circ}C$ for the concentration of 2.5g/L in the air and became higher with the increasing of nitrogen concentration. It was also found that the ignition didn't occur when the oxygen concentration was below 10%, and limiting oxygen concentration is at 11%.

A Study on Spontaneous Ignition of Hydroxy Propyl Methyl Cellulose (Hydroxy Propyl Methyl Cellulose의 자연발화에 관한 연구)

  • 최재욱;목연수;하동명
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.34-40
    • /
    • 2001
  • The spontaneous ignition of hydroxypropyl methyl cellulose(HPMC) was investigated at constant ambient temperature in the oven and minimum ignition temperature of dust clouds with Godbret-Creenwald Furnace respectively, In the experiments of the vessel filled with sample. the larger the vessel was the lower the spontaneous ignition temperature and ambient temperature was calculated from the Frank-Kamenetskii thermal ignition theory. The minimum ignition temperature for the dust cloud state was found under 21% oxygen concentration. At the experiment with the change of oxygen concentration, HPMC was not ignite at 10% $O_2$and so the limiting oxygen concentration was obtained at 10%.

  • PDF

Durability Estimation for ER Fluids of Methyl Cellulose Component in Smart Hydraulic Systems (지능형 유압시스템을 위한 메틸 셀루로이즈 성분 ER 유체의 내구성 평가)

  • 김옥삼;박우철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1211-1219
    • /
    • 2001
  • The electro-rheological(ER) fluids for smart hydraulic system are a class of colloidal dispersion which exhibit large reversible Changes in their rheological behavior when they are subjected to external electrical fields. This paper presents experimental results on material properties of an ER fluids subjected to electrical fatigues. As a first step, ER fluid is made of methyl cellulose(MC) choosing 25% of particle weight-concentration. Following the construction of test mechanism for durability estimation, the dynamic yield shear stress and the current density for the ER fluids of MC component are experimentally distilled as a function of electric field. In addition, the surface roughness of the employed electrode are evaluated as a function of the number of the electric-field cycles.

  • PDF

A Study on Dust Explosion Characteristics of Hydroxypropyl Methyl Cellulose (Hydroxypropyl Methyl Cellulose의 분진 폭발특성에 관한 연구)

  • 임우섭;목연수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.95-100
    • /
    • 2000
  • This study was performed in Hartmann type dust explosion apparatus in order to research the dust explosion characteristics of hydroxypropyl methyl cellulose(HPMC): minimum explosive limit, minimum ignition energy, limiting oxygen concentration, maximum explosion pressure, rate of pressure rise, etc. The samples of HPMC dust were distributed into 120-140 mesh, 170-230 mesh and 325 under, and the gap distance of the discharge electrode was setted up at 5mm. The experimental results were obtained as follows: (1) The minimum explosive limit for HPMC dust was founded at 180g/㎥. the minimum ignition energy at 9.8mJ and the limiting oxygen concentration at 12%. (2) The maximum explosion pressure of HPMC dust was $8.1kg/cm^2\;{\cdot}\;$abs at the concentration of $500g/m^3$ and the maximum rate of pressure rise was 203.98 bar/sec at the concentration of $480g/m^3$ for 325 under.

  • PDF

Grafting of MMA onto MCC through free radical method and its application to all natural cellulose composite film preparation (Microcrystalline cellulose에 자유 라디칼을 이용한 methyl methacrylate의 그래프팅 반응과 이를 이용한 천연복합필름의 제조)

  • Lee, Soo;Park, Sang-Hee;Jin, Seok-Hwan;Lee, Sun-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.459-468
    • /
    • 2008
  • Methyl methacrylate(MMA) was grafted onto microcrystalline cellulose(MCC) with ceric ammonium nitrate(CAN) as a redox initiator at the various conditions. The cellulose triacetate(CTA) composite films added MCC and MMA-grafted MCC powders were prepared on a glass plate. The graft yield(GY) and graft efficiency(GE) of the grafted MCC were calculated with the simple equations by the weight balance method. The double bond of C=O on the grafted MCC surfaces was confirmed by the fourier transform infrared spectroscopy with attenuated total reflection(FT-IT ATR) spectrophotometer. After grafting, the degree of crystallinity of cellulose powders was decresed by judging from x-ray diffraction(XRD) data. Scanning electron microscope(SEM) photos showed the only solvent and CAN solution could change the roughness of MCC powders and the effect of powder dispersions in composite matrix. The tensile strength of MCC/CTA composite films was decreased with increase of MCC powder contents. When 5% grafted MCC was added, the tensile strength of grafted MCC/CTA composite films was increased from 82.3 MPa to 97.2 MPa. The thermal property of powders was also analyzed by the thermogravimetric analysis(TGA).