• 제목/요약/키워드: Method of Noise Analysis

검색결과 3,823건 처리시간 0.036초

다차원 스펙트럼 해석법을 이용한 로드노이즈의 전달경로 해석 및 실내음압 예측 (Transfer Path Analysis and Interior Noise Estimation of the Road Noise Using Multi-Dimensional Spectral Analysis Method)

  • 박상길;강귀현;황성욱;오기석;노국희;오재응
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.779-784
    • /
    • 2008
  • This paper presents a the method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. By coherence function method, it is found that the biggest part of the noise source in the road noise is generated by structural vibration on the mechanical-acoustic transfer functions of vehicles. This analysis is modeled as four input/single output system because the noise is generated with four wheels that mechanism of the road noise is very complicated. The coherence function method is proved to be useful tool for identifying of noise source. The overall levels of the interior noise be coherence function method are compared with those measured and calculated by the frequency response function approach using mechanical excitation test. The experimental results have shown a good agreement with the results calculated by the coherence function method when the input sources are coherent strongly each other. The estimation of the road noise indicates that significant coherent can be achieved in the vehicle interior noise.

  • PDF

다물체계내 유연체의 구조기인 소음해석 (Structure Borne Noise Analysis of a Flexible Body in Multibody System)

  • 김효식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

예측소음도와 설문결과를 이용한 철도소음 노출-반응 모델 (Railway Noise Exposure-response Model based on Predicted Noise Level and Survey Results)

  • 손진희;이건;장서일
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.400-407
    • /
    • 2011
  • The suggested method of previous Son's study dichotomized subjective response data to modeling noise exposure-response. The method used maximum liklihood estimation instead of least square estimation and the noise exposure-response curve of the study was logistic regression analysis result. The method was originated to modeling community response rate such as %HA or %A. It can be useful when the subjective response was investigated based on predicted noise level. It is difficult to measure the single source emitting noise such as railway because various traffic noise sources combined in our life. The suggested method was adopted to model in this study and railway noise-exposure response curves were modeled because the noise level of this area was predicted data. The data of this study was used by previous Ko's paper but he dealt the area as combined noise area and divided the data by dominant noise source. But this study used all data of this area because the annoyance response to railway noise was higher than other noise according to the result of correlation analysis. The trend of the %HA and %A prediction model to train noise of this study is almost same as the model based on measured noise of previous Lim's study although the investigated areas and methods were different.

음선추적법과 통계적 에너지 분석법을 이용한 철도차량 실내 소음 해석 (Noise Prediction of Train Using Ray Tracing Method and Statistical Energy Analysis)

  • 박희준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.942-946
    • /
    • 2010
  • As the major sources of interior noise of train at running condition are the wheel/rail contact noise, the traction motor's noise and the driving gear's noise and these noise sources are transmitted through the car body, the noises of HVAC and air duct can be ignored. But the interior noise of train at standstill condition is decided by HVAC's noise and noise from the diffuser through the air duct. the interior noise prediction of train at standstill condition should be performed considering the shape of air duct, the air velocity and noise reduction property inside the air duct. But it is hard to estimate the interior noise level by the numerical method. Therefore train maker predict the interior noise level using The commercial noise prediction program. This paper introduce the noise prediction method of the train at standstill condition using the commercial program appling the ray tracing method and statistical energy analysis.

  • PDF

파워트레인에 의한 차량 실내 소음 특성 및 전달 함수 측정 (The Analysis of Vehicle Interior Noise by the Powertrain, and Measurement of Noise Trasnsfer Function using Vibro-Acoustic Reciprocity)

  • 김성종;이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.501-506
    • /
    • 2007
  • Structure-borne noise is the interior noise that results from the low frequency vibrational energy transmitted through those body and joint parts. The relation between the excitation of powertrain and resultant interior sound must be analyzed in order to identify and predict the structure borne noise. The method of acoustic source excitation is preferred than the method of mechanical force excitation to measure the NTF(noise transfer function). Because acoustical method is more convenient and reliable. In this paper, to analysis and identify vehicle interior noise by powertrain is performed, and the vibro-acoustic transfer function is extracted from experimental measurement. These are important step of TPA(transfer path analysis) to identify effect of interior noise resulted from powertrain running excitation.

  • PDF

엔진의 소음.진동발생기구 및 전달특성 규명 -다차원해석법과 벡터합성법에 의한 차실소음원 규명 및 소음저감 - (The Identification of Generation Mechanism of Noise and Vibrtaion and Transmission Characteristics for Engine System - The Source Identification and Noise Reduction of Compartment by Multidimensional Spectral Analysis and Vector Synthesis Method -)

  • 오재응
    • 대한기계학회논문집A
    • /
    • 제21권7호
    • /
    • pp.1127-1140
    • /
    • 1997
  • With the study for identifying the transmission characteristics of vibration and noise generated by operating engine system of a vehicle, recently many engineers have studied actively the reduction of vibration and noise inducing uncomfortableness to the passenger. In this study, output noise was analyzed by multi-dimensional spectral analysis and vector synthesis method. The multi-dimensional analysis method is very effective in case of identification of primary source, but this method has little effect on suggestion for interior noised reduction. For compensation of this, vector synthesis method was used to obtain effective method for interior noise reduction, after identifying primary source for output noise. In this paper, partial coherence function of each input was calculated to know which input was most coherent to output noise, then with simulation of changes for input magnitude and phase by vector synthesis diagram, the trends of synthesized output vector was obtained. As a result, the change of synthesized output vector could be estimated.

다차원 스펙트럼 해석법에 의한 프린터의 소음원 검출에 관한 연구 (A Study on the Noise Source Identification of Daisy Wheel Printer using Multi-Dimensional Spectrial Analysis Method)

  • 오재응;박준철;임동규
    • 한국음향학회지
    • /
    • 제5권1호
    • /
    • pp.24-34
    • /
    • 1986
  • Recently, as the noise problems of mechancial structures have been more serious, much studies are being carried out on the identification of noise sources and the reduction of noise level. In this paper, as the application of frequency analysis, the multi-dimensional spectral analysis method is applied to daisy wheel printer to identify the noise sources, and the relationship between sound pressure and vibration of printer is found in narrow and overall frequency range. The results of this study are compared with those of frequency response function method, thus, the applicability of multidimensional spectral analysis method is verified. It can be found, in a overall frequency range, that the vibration of platen have the worst effect on noise level, and the noise level reduction of 6dB, 7.9dB is obtained by changing the platen thickness to 2mm, 4mm, respectively.

  • PDF

파워흐름해석법을 이용한 무인잠수정의 수중방사소음해석 (Underwater Radiated Noise Analysis for An Unmanned Underwater Vehicle Using Power Flow Analysis)

  • 권현웅;홍석윤;이상영;황아롬;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제22권4호
    • /
    • pp.328-334
    • /
    • 2012
  • Power flow finite element method(PFFEM) combining power flow analysis(PFA) with finite element method is efficient for vibration analysis of a built-up structure, and power flow boundary element method(PFBEM) combining PFA with boundary element method is useful for predicting the noise level of a vibrating complex structure. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the unmanned underwater vehicle(UUV) in water. PFFEM is employed to analyze the vibrational responses of the UUV, and PFBEM is applied to analyze the underwater radiation noise. The vibrational energy of the structure is treated as an acoustic intensity boundary condition of PFBEM to calculate underwater radiation noise. Numerical simulations are presented for the UUV in water, and reliable results have been obtained.

바크하우젠 노이즈 해석에 의한 재료의 열화도 평가 (Degradation Estimation Of Material by Barkhausen Noise Analysis)

  • 이명호
    • 한국공작기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.38-46
    • /
    • 2005
  • The destructive method is reliable and widely used for the estimation of material degradation but it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. In this study, various nondestructive evaluation(NDE) parameters of the Barkhausen noise method, such as MPA(Maximum Peak Amplitude), RMS, IABNS(Internal Area of Barkhausen Noise on Signal) and average amplitude of frequency spectrum are investigated and correlated with thermal damage level of 2.25cr-1.0Mo steel using wavelet analysis. Those parameters tend to increase while thermal degradation proceeds. It also turns out that the wavelet technique can help to reduce experimental false call in data analysis.

TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석 (Sensitivity Analysis using TPA for Slosh Noise of Fuel Tank)

  • 차희범;윤성호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.356-360
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

  • PDF