• 제목/요약/키워드: Method Selection

검색결과 6,619건 처리시간 0.032초

A study of selection operator using distance information between individuals in genetic algorithm

  • Ito, Minoru;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1521-1524
    • /
    • 2003
  • In this paper, we propose a "Distance Correlation Selection operator (DCS)" as a new selection operator. For Genetic Algorithm (GA), many improvements have been proposed. The MGG (Minimal Generation Gap) model proposed by Satoh et.al. shows good performance. The MGG model has all advantages of conventional models and the ability of avoiding the premature convergence and suppressing the evolutionary stagnation. The proposed method is an extension of selection operator in the original MGG model. Generally, GA has two types of selection operators, one is "selection for reproduction", and the other is "selection for survival"; the former is for crossover and the latter is the individuals which survive to the next generation. The proposed method is an extension of the former. The proposed method utilizes distance information between individuals. From this extension, the proposed method aims to expand a search area and improve ability to search solution. The performance of the proposed method is examined with several standard test functions. The experimental results show good performance better than the original MGG model.

  • PDF

Detection for JPEG steganography based on evolutionary feature selection and classifier ensemble selection

  • Ma, Xiaofeng;Zhang, Yi;Song, Xiangfeng;Fan, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5592-5609
    • /
    • 2017
  • JPEG steganography detection is an active research topic in the field of information hiding due to the wide use of JPEG image in social network, image-sharing websites, and Internet communication, etc. In this paper, a new steganalysis method for content-adaptive JPEG steganography is proposed by integrating the evolutionary feature selection and classifier ensemble selection. First, the whole framework of the proposed steganalysis method is presented and then the characteristic of the proposed method is analyzed. Second, the feature selection method based on genetic algorithm is given and the implement process is described in detail. Third, the method of classifier ensemble selection is proposed based on Pareto evolutionary optimization. The experimental results indicate the proposed steganalysis method can achieve a competitive detection performance by compared with the state-of-the-art steganalysis methods when used for the detection of the latest content-adaptive JPEG steganography algorithms.

Simulation Optimization with Statistical Selection Method

  • Kim, Ju-Mi
    • Management Science and Financial Engineering
    • /
    • 제13권1호
    • /
    • pp.1-24
    • /
    • 2007
  • I propose new combined randomized methods for global optimization problems. These methods are based on the Nested Partitions(NP) method, a useful method for simulation optimization which guarantees global optimal solution but has several shortcomings. To overcome these shortcomings I hired various statistical selection methods and combined with NP method. I first explain the NP method and statistical selection method. And after that I present a detail description of proposed new combined methods and show the results of an application. As well as, I show how these combined methods can be considered in case of computing budget limit problem.

Development of Interactive Feature Selection Algorithm(IFS) for Emotion Recognition

  • Yang, Hyun-Chang;Kim, Ho-Duck;Park, Chang-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권4호
    • /
    • pp.282-287
    • /
    • 2006
  • This paper presents an original feature selection method for Emotion Recognition which includes many original elements. Feature selection has some merits regarding pattern recognition performance. Thus, we developed a method called thee 'Interactive Feature Selection' and the results (selected features) of the IFS were applied to an emotion recognition system (ERS), which was also implemented in this research. The innovative feature selection method was based on a Reinforcement Learning Algorithm and since it required responses from human users, it was denoted an 'Interactive Feature Selection'. By performing an IFS, we were able to obtain three top features and apply them to the ERS. Comparing those results from a random selection and Sequential Forward Selection (SFS) and Genetic Algorithm Feature Selection (GAFS), we verified that the top three features were better than the randomly selected feature set.

공공공사 발주방식 선정에 영향을 미치는 요인 연구 (A Study of Factors Influencing Delivery Methods Selection on Public Construction Projects)

  • 김대길;이웅균;이학주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.218-219
    • /
    • 2014
  • The selection of an appropriate contract method is vital for the successful operation of the project. However, there has been a lack of studies on objective decision making support models for use in the planning stage of a project contract. The present study had the goal of analyzing the factors that influence contract method selection, as an initial study for developing a project contract method selection model. The existing related studies were analyzed, and the factors considered in the literature were selected. Then, based on the findings, the opinions of an expert group on the important factors for contract method selection were collected through a survey. The collected opinions were analyzed using factor analysis, a statistical analysis method. The results will be utilized in the future as preliminary data for developing a decision making model for selecting a contract method.

  • PDF

AutoFe-Sel: A Meta-learning based methodology for Recommending Feature Subset Selection Algorithms

  • Irfan Khan;Xianchao Zhang;Ramesh Kumar Ayyasam;Rahman Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1773-1793
    • /
    • 2023
  • Automated machine learning, often referred to as "AutoML," is the process of automating the time-consuming and iterative procedures that are associated with the building of machine learning models. There have been significant contributions in this area across a number of different stages of accomplishing a data-mining task, including model selection, hyper-parameter optimization, and preprocessing method selection. Among them, preprocessing method selection is a relatively new and fast growing research area. The current work is focused on the recommendation of preprocessing methods, i.e., feature subset selection (FSS) algorithms. One limitation in the existing studies regarding FSS algorithm recommendation is the use of a single learner for meta-modeling, which restricts its capabilities in the metamodeling. Moreover, the meta-modeling in the existing studies is typically based on a single group of data characterization measures (DCMs). Nonetheless, there are a number of complementary DCM groups, and their combination will allow them to leverage their diversity, resulting in improved meta-modeling. This study aims to address these limitations by proposing an architecture for preprocess method selection that uses ensemble learning for meta-modeling, namely AutoFE-Sel. To evaluate the proposed method, we performed an extensive experimental evaluation involving 8 FSS algorithms, 3 groups of DCMs, and 125 datasets. Results show that the proposed method achieves better performance compared to three baseline methods. The proposed architecture can also be easily extended to other preprocessing method selections, e.g., noise-filter selection and imbalance handling method selection.

A Hybrid Selection Method of Helpful Unlabeled Data Applicable for Semi-Supervised Learning Algorithm

  • Le, Thanh-Binh;Kim, Sang-Woon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권4호
    • /
    • pp.234-239
    • /
    • 2014
  • This paper presents an empirical study on selecting a small amount of useful unlabeled data to improve the classification accuracy of semi-supervised learning algorithms. In particular, a hybrid method of unifying the simply recycled selection method and the incrementally-reinforced selection method was considered and evaluated empirically. The experimental results, which were obtained from well-known benchmark data sets using semi-supervised support vector machines, demonstrated that the hybrid method works better than the traditional ones in terms of the classification accuracy.

Informative Gene Selection Method in Tumor Classification

  • Lee, Hyosoo;Park, Jong Hoon
    • Genomics & Informatics
    • /
    • 제2권1호
    • /
    • pp.19-29
    • /
    • 2004
  • Gene expression profiles may offer more information than morphology and provide an alternative to morphology- based tumor classification systems. Informative gene selection is finding gene subsets that are able to discriminate between tumor types, and may have clear biological interpretation. Gene selection is a fundamental issue in gene expression based tumor classification. In this report, techniques for selecting informative genes are illustrated and supervised shaving introduced as a gene selection method in the place of a clustering algorithm. The supervised shaving method showed good performance in gene selection and classification, even though it is a clustering algorithm. Almost selected genes are related to leukemia disease. The expression profiles of 3051 genes were analyzed in 27 acute lymphoblastic leukemia and 11 myeloid leukemia samples. Through these examples, the supervised shaving method has been shown to produce biologically significant genes of more than $94\%$ accuracy of classification. In this report, SVM has also been shown to be a practicable method for gene expression-based classification.

New Feature Selection Method for Text Categorization

  • Wang, Xingfeng;Kim, Hee-Cheol
    • Journal of information and communication convergence engineering
    • /
    • 제15권1호
    • /
    • pp.53-61
    • /
    • 2017
  • The preferred feature selection methods for text classification are filter-based. In a common filter-based feature selection scheme, unique scores are assigned to features; then, these features are sorted according to their scores. The last step is to add the top-N features to the feature set. In this paper, we propose an improved global feature selection scheme wherein its last step is modified to obtain a more representative feature set. The proposed method aims to improve the classification performance of global feature selection methods by creating a feature set representing all classes almost equally. For this purpose, a local feature selection method is used in the proposed method to label features according to their discriminative power on classes; these labels are used while producing the feature sets. Experimental results obtained using the well-known 20 Newsgroups and Reuters-21578 datasets with the k-nearest neighbor algorithm and a support vector machine indicate that the proposed method improves the classification performance in terms of a widely known metric ($F_1$).

A New Variable Selection Method Based on Mutual Information Maximization by Replacing Collinear Variables for Nonlinear Quantitative Structure-Property Relationship Models

  • Ghasemi, Jahan B.;Zolfonoun, Ehsan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1527-1535
    • /
    • 2012
  • Selection of the most informative molecular descriptors from the original data set is a key step for development of quantitative structure activity/property relationship models. Recently, mutual information (MI) has gained increasing attention in feature selection problems. This paper presents an effective mutual information-based feature selection approach, named mutual information maximization by replacing collinear variables (MIMRCV), for nonlinear quantitative structure-property relationship models. The proposed variable selection method was applied to three different QSPR datasets, soil degradation half-life of 47 organophosphorus pesticides, GC-MS retention times of 85 volatile organic compounds, and water-to-micellar cetyltrimethylammonium bromide partition coefficients of 62 organic compounds.The obtained results revealed that using MIMRCV as feature selection method improves the predictive quality of the developed models compared to conventional MI based variable selection algorithms.