• 제목/요약/키워드: Method 1623

Search Result 42, Processing Time 0.02 seconds

Presence of Cryptosporidium spp. and Giardia duodenalis in Drinking Water Samples in the North of Portugal

  • Almeida, Andre;Moreira, Maria Joao;Soares, Sonia;Delgado, Maria de Lurdes;Figueiredo, Joao;Silva, Elisabete;Castro, Antonio;Da Cosa, Jose Manuel Correida
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • Cryptosporidium and Giardia are 2 protozoan parasites responsible for waterborne diseases outbreaks worldwide. In order to assess the prevalence of these protozoans in drinking water samples in the northern part of Portugal and the risk of human infection, we have established a long term program aiming at pinpointing the sources of surface water, drinking water, and environmental contamination, working with the water-supply industry. Total 43 sources of drinking water samples were selected, and a total of 167 samples were analyzed using the Method 1623. Sensitivity assays regarding the genetic characterization by PCR and sequencing of the genes, 18S SSU rRNA, for Cryptosporidium spp. and $\beta$, -giardin for G. duodenalis were set in the laboratory. According to the defined criteria, molecular analysis was performed over 4 samples. Environmental stages of the protozoa were detected in 25.7% (43 out of 167) of the water samples, 8.4% (14 out of 167) with cysts of Giardia, 10.2% (17 out of 167) with oocysts of Cryptosporidium and 7.2% (12 out of 167) for both species. The mean concentrations were 0.1-12.7 oocysts of Cryptosporidium spp. per 10 L and 0.1-108.3 cysts of Giardia duodenalis per 10 L. Our results suggest that the efficiency in drinking water plants must be ameliorated in their efficiency in reducing the levels of contamination. We suggest the implementation of systematic monitoring programs for both protozoa. To authors' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in drinking water samples in the northern part of Portugal.

Interlaboratory Study for Cryptosporidium and Giardia Test Methods in Water (정수장 원생동물 분석방법의 국내 실험실간 교차시험 연구)

  • Chung, Hyenmi;Park, Sangjung;Kim, Daekyun;Park, Sanghee;Kim, Reeho;Lee, Sangho;Cho, Joorae;Lee, Kyeunghee;Park, Jonggeun;Lee, Mokyoung;Byun, Seungheon;Cho, Eunju;Rhim, Yeontaek
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.321-327
    • /
    • 2006
  • This interlaboratory study was designed to evaluate protozoan test methods in water and to predict the major causes of deviation of the methods. Each of four laboratories with previous experience of protozoa analysis in water participated, and met the initial performance criteria of EPA 1623 method provided. The protozoan analysis procedure consists of filtrations, concentration, immunomagnetic separation, dyeing (staining) and counting with observation. We tested three different filtration equipments: capsule filter for 10 L of surface water, and high volume (HV) capsule filter and membrane filter for 100 L of finished water. When the recovery of each step of the procedure was evaluated with EasySeed, the commercial stock of each 100 Cryptosporidium and Giardia, immunomagnetic separation and filtration step were the most crucial steps affecting the stability of the recovery, especially for Cryptosporidium. There was no significant difference of recovery among the filtration methods. Recovery of protozoa from source water were evaluated with spiked EasySeed as matrix tests. The recoveries of Giardia increased significantly in the matrix tests compared those in the deionized water. We also applied red stained mixture stocks of Cryptosporidium and Giardia called ColorSeed as internal standards of water sample tests. The recoveries of both EasySeed and ColorSeed in samples tested were within the range of the criteria, however, the Giardia recoveries using ColorSeed decreased significantly. Further optimization study with ColorSeed will be necessary, considering the convenience of using the internal standard without additional sample analysis. The significant factors of the recovery variation were identified as the differences of laboratories as well as water quality and type of the stock for spiking. The results of this study emphasize the importance of the quality assurance program for protozoan analysis lab in water.