• Title/Summary/Keyword: Methionine chelates

Search Result 10, Processing Time 0.028 seconds

Effects of Dietary Supplementation of Copper Chelates in the Form of Methionine, Chitosan and Yeast in Laying Hens

  • Lim, H.S.;Paik, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1174-1178
    • /
    • 2006
  • An experiment was conducted to investigate the effects of dietary supplementation of copper chelates in the form of methionine, chitosan and yeast on the performance of laying hens. Four hundred ISA Brown layers, 84 wks old, were assigned to 4 treatments: control, 100 ppm Cu in methionine chelate (Met-Cu), 100 ppm Cu as chitosan chelate (Chitosan-Cu) and 100 ppm Cu as yeast chelate (Yeast-Cu). Each treatment had five replicates of 20 hens. Hen-day and hen-housed egg production and egg weight were significantly (p<0.05) increased by Met-Cu supplementation. The increase by Chitosan-Cu and Yeast-Cu supplementation was not significant. Contrast of the control vs. Cu chelates showed egg weight was significantly (p<0.05) increased by Cu chelate supplementation. Soft-shell egg production was significantly (p<0.05) reduced by supplementation of Cu chelates. Met-Cu treatment showed the lowest incidence of soft egg production. Gizzard erosion index was increased by Cu chelate supplementation. Crude fat in liver, total cholesterol in yolk and Cu content in liver and yolk were not significantly influenced by Cu chelate supplementation. It was concluded that dietary supplementation of 100 ppm Cu as Met-Cu significantly increased egg production and egg weight. Cu-Met chelate was also effective in reducing soft-shell egg production but increased gizzard erosion index.

Effects of Supplementary Copper Chelates in the Form of Methionine, Chitosan and Yeast on the Performance of Broilers

  • Lim, H.S.;Paik, I.K.;Sohn, T.I.;Kim, W.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1322-1327
    • /
    • 2006
  • An experiment was conducted to investigate the effects of supplemental copper (Cu) chelates (methionine, chitosan and yeast) on the performance, nutrient digestibility, serum IgG level, gizzard erosion, Cu content in the liver and excreta and the level of total cholesterol in breast muscle and serum of broiler chickens. Two hundred and forty hatched broiler chickens (Ross$^{(R)}$ 208) were assigned to 4 treatments: control, 100 ppm Cu in methionine chelate (Met-Cu), 100 ppm Cu in chitosan chelate (Chitosan-Cu) and 100 ppm Cu in yeast chelate (Yeast-Cu). Each treatment had six replicates of 10 (5 males+5 females) birds each. Weight gain and feed intake tended to be higher in Cu chelate treatments than the control; weight gain was significantly higher in the Met-Cu chelate treatment and feed intake was significantly higher in the Yeast-Cu chelate treatment than the control (p<0.05). Feed/gain was significantly different between treatments in which Met-Cu was lowest followed by the control, Chitosan-Cu and Yeast-Cu. DM availability was increased by Cu chelates among which chitosan-Cu showed the highest DM availability. Cu chelates supplementation tended to increase gizzard erosion index, and Cu content in the liver was highest in the Met-Cu treatment. Supplementation of Cu chelates tended to decrease total cholesterol level in breast muscle and serum but tended to increase the level of HDL in serum. It was concluded that dietary supplementation of 100 ppm Cu in chelates increased weight gain, feed intake and DM availability. Met-Cu was more effective than Chitosan-Cu or Yeast-Cu in improving productivity of broiler chickens.

Effects of Supplementary Mineral Methionine Chelates (Zn, Cu, Mn) on the Performance and Eggshell Quality of Laying Hens

  • Lim, H.S.;Paik, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1804-1808
    • /
    • 2003
  • A layer experiment was conducted to determine the effects of supplementary methionine chelates (Cu, Zn and Mn), individual or in combination, on laying performance, eggshell quality, gizzard erosion, and IgG level of serum for 8 weeks. Five hundred 96-wk-old force molted ISA Brown layers were assigned to five dietary treatments. Basal diet was formulated to meet or exceed the nutrients requirements listed in NRC (1994). Five experimental diets were control, Zn-methionine chelate (Zn-Met) supplemented, Cumethionine chelate (Cu-Met) supplemented, Zn-Mn-methionine chelate (Zn-Mn-Met) supplemented and Zn-Mn-Cu-Met supplemented diet. Each treated diet was supplemented with respective mineral(s) at the level of 100 ppm in the form of methionine chelate. Egg production was increased by Cu-Met supplementation but decreased by Zn-Met supplementation. Egg weight was significantly (p<0.05) lower in Cu-Met treatment than those of the control and Zn-Met treatment. Specific gravity of eggs and eggshell strength were highest and soft egg production was lowest in Cu-Met treatment. Gizzard erosion index was significantly increased by supplementation of Cu-Met, Zn-Mn-Met or Zn-Mn-Cu-Met. Zinc content in liver significantly increased by Zn-Met, but not by Zn-Mn-Cu-Met treatment. In conclusion, 100 ppm Cu in Cu-Met chelate improved laying performance and eggshell quality but also increased gizzard erosion index. Supplementation of Zn-Met or its combination with other mineral chelates had no beneficial effects on laying performance and eggshell quality.

사료 內 Cu 및 Zn-methionine chelates 첨가가 육계의 생산성에 미치는 영향

  • 홍성진;남궁환;백인기
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2001.11a
    • /
    • pp.66-68
    • /
    • 2001
  • An experiment was conducted investigate the of supplemental Cu and Zn methionine chelates on the performance, nutrient digestibility, serum IgG level, gizzard erosion, and Cu and Zn contents in the liver and excretion of broiler chickens. One thousand hatched broiler chickens (Ross) of one day old were assigned to 4 treatments:control(T1), 100ppm of copper in the from of Cu-methionine chelate(Cu-Met, T2), 100ppm of zinc in the from of Zn-methionine chelate(Zn-Met, T3) and 100ppm of copper plus 100ppm of zinc in the from of methionine chelate(Cu-Zn-Met, T4). Each treatment had four replications of 50 bird each. Weight gain of chicks fed chelated products were significantly higher than that of chicks fed control(P<0.05).Combination of Cu and Zn chelates(Cu-Zn-Met) tended to show the best growth rate and feed conversion ratio. Nutrient digestibilities were not affected by dietary treatments. Serum IgG level of chicks fed Cu-Zn-Met was significantly higher than that of chicks fed control(P<0.05). Gizzard erosion index was not significantly different among treatments. Contents of Cu and Zn in liver were not significantly affected by dietary treatments, whereas excretions of these minerals were significantly affected by dietary treatments.

  • PDF

FT-IR and XRD Analyses of Commercial Methionine-Mineral Chelates

  • Han, Jae-Hong;Chi, Yong-Seok;Shin, Bok-Kyu;Kim, Sang-Kyu;Paik, In-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.8-10
    • /
    • 2006
  • Compositions of methionine-metal chelates have been investigated by FT-IR and XRD studies to elucidate their molecular structures. It was concluded that Copamin and Zincamin contain a high percentage of crystalline products, presumably 2:1 Methionine-Cu or Zn complexes. On the contrary, FT-IR and XRD spectra of Ferramin didn't show any characteristics of the chelate and it was concluded to contain major components of starting $FeSO_4$ and methionine without chelation.

Effect of Copper Chelates(Methionine-Cu, Chitosan-Cu and Yeast-Cu) as the Supplements to Weaning Pig Diet (이유자돈의 사료 첨가제로서 Copper Chelates(메치오닌, 키토산, 효모)의 효과)

  • Kim, B. H.;Lim, H. S.;Namkung, H.;Paik, I. K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.49-56
    • /
    • 2003
  • An experiment was conducted to study the effects of the dietary Cu sources on the performance of the weanling pigs. Forty-eight, 24 in each sex, 4 weeks old pigs were assigned to four treatments; control, methionine-Cu chelate, chitosan-Cu chelate or yeast-Cu chelate. Control diet contained 136ppm Cu to which additional 100ppm Cu in different chelated form was added to the respective treatment. Individual pig weight and feed intake of each pen were recorded weekly for 5 weeks. Average daily feed intakes(ADFI), average daily gains(ADG) and ADFI/ADG were not significantly different among treatments. Nutrient availability was not also significantly affected by treatments. Serum triglyceride concentration of chitosan-Cu treatment was significantly lower than those of methionine-Cu and yeast-Cu treatments but was not significantly different from that of the control. Serum cholesterol concentration of yeast-Cu was significantly lower than those of the control and methionine-Cu but was not significantly different from that of chitosan-Cu treatment. Serum HDL-cholesterol concentration was not significantly affected by treatments. Serum IgG concentrations of all copper treatments were significantly lower than that of the control. It was concluded that Cu-chelates supplemented to the basal diet (136ppm Cu) by the level of 100ppm Cu did not significantly affect growth performance of weaning pigs. However, serum parameters of cholesterol, cholesterol and IgG were significantly affected by the treatments.

Effects of Cu and Zn-Methionine Chelates Supplementation on the Performance of Broiler Chickens (사료 內 Cu 및 Zn-Methionine Chelates 첨가가 육계의 생산성에 미치는 영향)

  • Hong, S.J.;Lim, H.S.;Paik, I.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.399-406
    • /
    • 2002
  • An experiment was conducted to investigate the effects of supplemental copper or/and zinc methionine chelates(Cu-Met or/and Zn-Met) on the performance, nutrient digestibility, serum IgG level, gizzard erosion, and the contents of Cu and Zn in liver and excreta of broiler chickens. One thousand d-old broiler chickens (Ross$^{(R)}$) were assigned to 4 treatments: control, 100 ppm Cu in methionine chelate(Cu-Met), 100 ppm Zn in methionine chelate(Zn-Met) and 100 ppm Cu plus 100 ppm Zn in methionine chelate(Cu-Zn-Met). Each treatment had five replications of 50 (25 male + 25 female) birds each. Average weight gains of chicks fed chelated Cu or/and Zn were significantly higher than that of chicks fed the control (P<0.05). Moreover, feed conversion rates of chicks were better in the chicks fed chelated Cu or/and Zn than in the chicks fed the control (P<0.05). The birds fed the chelated Cu and Zn(Cu-Zn-Met) tended to perform the best growth rate and feed conversion rate. Nutrient digestibilities were not affected by the dietary treatments. Serum IgG level of chicks fed Cu-Zn-Met was significantly higher than that of chicks fed the control (P<0.05). Gizzard erosion index was not significantly different among the treatments. The contents of Cu and Zn in liver were not significantly affected by the dietary treatments. The excreta contents of Cu or/and Zn were significantly high in the birds fed supplementary Cu or/and Zn. It was concluded that dietary supplementation of Cu or/and Zn in methionine chelated form improved growth and feed conversion efficiency of broilers.

Evaluation of Metal-Amino Acid Chelates and Complexes at Various Levels of Copper and Zinc in Weanling Pigs and Broiler Chicks

  • Lee, S.H.;Choi, S.C.;Chae, B.J.;Lee, J.K.;Acda, S.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1734-1740
    • /
    • 2001
  • Feeding trials using weanling pigs and broiler chicks were conducted to evaluate the efficacy of different metal-amino acid chelates and complexes at various levels of copper and zinc on the performance and fecal excretions. A total of 200 weanling pigs (Large White ${\times}$ Yorkshire ${\times}$ Duroc, $11.20{\pm}0.81kg$) were randomly assigned to 5 dietary treatments following a randomized complete block design. Each treatment was replicated 4 times with 10 pigs per pen. The dietary treatments were designated as : A-diet containing 170 ppm Cu from $CuSO_4$ and 120 ppm Zn from $ZnSO_4$, B-diet containing 85 ppm Cu from Cu-amino acid chelate (CAC) and 60 ppm Zn from Zn-amino acid chelate (ZAC), C-diet containing 170 ppm Cu from CAC and 120 ppm Zn from ZAC, D-diet containing 85 ppm Cu from Cu-lysine complex (CL) and 60 ppm Zn from Zn-methionine complex (ZM), and E-diet containing 170 ppm Cu from CL and 120 ppm Zn from ZM. On the other trial, 144 of one day old broiler chicks were randomly distributed to 6 dietary treatments following a completely randomized design. Each treatment was replicated 3 times with 8 chicks per replicate. The dietary treatments were as follows: 1-diet with 60 ppm Cu from $CuSO_4$ and 40 ppm Zn from $ZnSO_4$, 2-diet with 120 ppm Cu from $CuSO_4$ and 80 ppm Zn from $ZnSO_4$, 3-diet with 60 ppm Cu from CAC and 40 ppm Zn from ZAC, 4-diet with 120 ppm Cu from CAC and 80 ppm Zn from ZAC, 5-diet with 60 ppm Cu from CL and 40 ppm Zn from ZM, and 6-diet with 120 ppm Cu from CL and 80 ppm Zn from ZM. In Exp. 1 with pigs, there was no difference on average daily gain and average daily feed intake observed among treatments. There was improvement (p<0.05) on the overall feed conversion ratio (FCR) of pigs fed diet containing 120 ppm Zn and 170 ppm Cu from metal-amino acid chelates relative to those fed diet containing inorganic sources of Cu and Zn but equally efficient as those fed diet containing metal-amino acid complexes. Pigs fed diet containing either metal-amino acid chelates or complexes as sources of Cu and Zn had higher (p<0.05) Cu and Zn concentration in serum and lower (p<0.05) in feces than those receiving diet with inorganic sources. In Exp. 2 with broiler chicks, the overall FCR was not different among treatments. Higher (p<0.05) Cu and Zn concentration in serum was obtained from birds fed diet with 60 ppm Cu and 40 ppm Zn from metal-amino acid chelates compared to those fed diet with inorganic sources of Cu and Zn. Also, the feces collected from birds fed diet with either metal-amino acid chelates or complexes contained generally lower Cu and Zn than those birds fed diet with inorganic sources. The higher the dietary level of Cu and Zn the higher the Cu and Zn concentration in the feces. Based on the results, both metal-amino acid chelates and complexes of Cu and Zn at low levels (Zn 60 ppm, Cu 85 ppm for weanling pigs and Zn 40 ppm, Cu 60 ppm for broiler chicks) are not different from that of high levels of inorganic sources in maintaining growth performance and serum concentration. The fecal excretions for Cu and Zn were greatly reduced when organic sources were used.

Estimation of Rumen By-pass Rate of Chromium-methionine Chelates by Ruminal Bacteria Analysis (반추미생물 분석에 의한 Chromium-methionine Chelate의 반추위 By-pass율 추정)

  • Kim, C.H.;Park, B.K.;Park, J.G.;Kim, H.S.;Sung, K.I.;Shin, J.S.;Ohh, S.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.759-768
    • /
    • 2005
  • The study was designed to estimate the in vitro rumen by-pass rate of both chromium methionine chelate as an organic supplement and $ClCl_3$ as an inorganic supplement. Rumen by-pass rates of the supplements were evaluted by comparing ruminal metabolites in rumen fluid and Cr and methionine contents in the body of ruminal microorganism. For in vitro digestion examination, basic nutrients for ruminal microbes were supplied with 7g(DM) of feed, 2g of rice straw, and 2g of corn silage per each incubation jar. Three treatments including Control(no supplementation of Cr), T1(1000ppb supplementation of $ClCl_3$) and T2(chromium methionine chelate supplementation equivalent to 1000ppb of Cr content) were prepared with five replications per each treatment. pH of T2 was lower than that of Control and T1 regardless of incubation time. Ammonia content was higher in T2 than in Control and T1 during first 6 hours of incubation. However, the ammonia content in Control was remained low after 6 hours. Total volatile fatty acids(VFA) content in control was increased constantly as incubation time was extended. Therefore, VFA content in T1 and T2 were significantly lower (P<0.05) than those of Control. Dry matter recovery rate by ruminal microorganism was the lowest in T1, however ruminal microbial population was increased most efficiently in T2 during 12 hours of in vitro incubation. Cr concentrations in the body of ruminal microbes were not different(P>0.05) between Control and T2, but it was significantly high in T1(P<0.05). Contents of methionine and cystine in ruminal microbes also were not different between Control and T2(P>0.05), but it was relatively low in T1. Based on the above results, the chromium methionine chelate was believed to by-pass rumen and could remain intact until it reaches small intestine compared to inorganic chromium. This results implies that chromium methionine chelate could be more effective to function in the small intestine of ruminant animals.

Effects of Different Sources of Dietary Chromium and Copper on Growth Performances, Nutrients Digestibility, Fecal Cr, Cu and Zn Excretion in Growing Pigs (크롬과 구리의 형태별 병용급여가 육성돈의 육성성적, 소화율 및 분의 Cr, Cu, Zn 배출량에 미치는 영향 미치는 영향)

  • Park, Jeoung-Keum;Kim, Jin-Woong;Yoo, Young-Beom;Lee, Jun-Yeop;Ohh, Sang-Jip
    • Journal of Animal Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.355-362
    • /
    • 2008
  • This study was carried out to evaluate effects of either organic or inorganic sources of both chromium and copper on growth performances, nutrients digestibility and fecal Cr, Cu, and Zn excretion in growing pigs. A total of 36 growing pigs((Landrace×Yorkshire)×Duroc, weighing 61.2kg in average) were allotted to 4 treatments with 3 replicates and 3 pigs per replicate. Four treatments were designated by supplemental sources of both chromium and copper as follows: ①200ppb Cr as Cr-methionine chelate(CrMet) and 200ppm Cuas copper methionine chelate(CuMet), ②200ppb Cr as CrMet and 200ppm Cu as copper sulfate(CuSO4), ③200ppb Cr as chromium chloride(CrCl3) and 200ppm Cu as CuMet, ④200ppb Cr as CrCl3 and 200ppm Cu as CuSO4. Growth performance was highest(p<0.05) in CrMet and CuMet supplemented diet treatment. Nutrients digestibility of diets was lowest(p<0.05) in CrMet and CuSO4 supplemented diet treatment, and highest(p<0.05) in CrMet and CuMet supplemented diet treatment. Fecal copper, zinc and chromium excretion was highest(p<0.05) in CrCl3 and CuSO4 supplementation treatment and lowest(p<0.05) in CrMet and CuMet supplementation treatment. This study showed a relatively high degree of utilization of Cr and Cu as well as Zn by supplementation of CrMet and CuMet compared with those of the inorganic sources.