• Title/Summary/Keyword: Methanol synthesis

Search Result 370, Processing Time 0.027 seconds

The Importance of the Aging Time to Prepare Cu/ZnO/Al2O3 Catalyst with High Surface Area in Methanol Synthesis

  • Jung, Heon;Yang, Dae-Ryook;Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1241-1246
    • /
    • 2010
  • Ternary Cu/ZnO/$Al_2O_3$ catalysts were prepared by a co-precipitation method. The precursor structures were monitored during the aging. The first precipitate structure was amorphous georgeite, which transformed into the unknown crystalline structure. The transition crystalline structure was assigned to the crystalline georgeite, which was suggested with elemental analysis, IR and XRD. The final structure of precursors was malachite. The Cu surface area of the resulting Cu/ZnO/$Al_2O_3$ was maximized to be 30.6 $m^2$/g at the aging time of 36 h. The further aging rapidly decreased Cu surface areas of Cu/ZnO/$Al_2O_3$. ZnO characteristic peaks in oxide samples almost disappeared after 24 h aging, indicating that ZnO was dispersed in around bulk CuO. TOF of the prepared catalysts of the Cu surface area ranges from 13.0 to 30.6 $m^2/g_{cat}$ was to be 2.67 ${\pm}$ 0.27 mmol/$m^2$.h in methanol synthesis at the condition of $250^{\circ}C$, 50 atm and 12,000 mL/$g_{cat}$. h irrespective of the XRD and TPR patterns of CuO and ZnO structure in CuO/ZnO/$Al_2O_3$. The pH of the precipitate solution during the aging time can be maintained at 7 by $CO_2$ bubbling into the precipitate solution. Then, the decrease of Cu surface area by a long aging time can be prevented and minimize the aging time to get the highest Cu surface area.

Yam (Dioscorea batatas) Root and Bark Extracts Stimulate Osteoblast Mineralization by Increasing Ca and P Accumulation and Alkaline Phosphatase Activity

  • Kim, Suji;Shin, Mee-Young;Son, Kun-Ho;Sohn, Ho-Yong;Lim, Jae-Hwan;Lee, Jong-Hwa;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.194-203
    • /
    • 2014
  • Yam (Dioscorea batatas) is widely consumed as functional food for health promotion mainly in East Asia countries. We assessed whether yam root (tuber) or bark (peel) extracts stimulated the activity of osteoblasts for osteogenesis. MC3T3-E1 cells (mouse osteoblasts) were treated with yam root extracts (water or methanol) (study I) or bark extracts (water or hexane) (study II) within $0{\sim}10{\mu}g/mL$ during the periods of osteoblast proliferation (5~10 day), matrix maturation (11~15 day) and mineralization (16~20 day) as appropriate. In study I, both yam root water and methanol extracts increased cell proliferation as concentration-dependent manner. Cellular collagen synthesis and alkaline phosphatase (ALP) activity, both the indicators of bone matrix protein and inorganic phosphate production for calcification respectively, were also increased by yam root water and methanol extract. Osteoblast calcification as cell matrix Ca and P accumulation was also increased by the addition of yam root extracts. In study II, yam bark extracts (water and hexane) increased osteoblast proliferation and differentiation, as collagen synthesis and ALP activity and osteoblast matrix Ca and P deposition. The study results suggested that both yam root and bark extracts stimulate osteogenic function in osteoblasts by stimulating bone matrix maturation by increasing collagen synthesis, ALP activity, and matrix mineralization.

Effects of temperature on the biomass yield and the chemical composition of pseudomonas cells in continuous culture (Pseudomonas sp.의 연속배양에 있어서의 세포의 수율 및 화학적 조성에 미치는 영향)

  • 김창진;이영록
    • Korean Journal of Microbiology
    • /
    • v.21 no.3
    • /
    • pp.163-169
    • /
    • 1983
  • Effects of temperature on the gorwth characteristics and the chemical composition of pseudomonas cells grown under glucose-or methanol-utilizing continuous culture were studied. In a glucose-utilizing continuous culture, optimum dilution rate, agitation, pH, and temperature, for the higher biomass yield were $0.45hr^-$, 7000rpm, pH 7.5, and $30^{\circ}C$, respectively. But in a methanol-utilizing continuous culture, they were $0.125hr^-$, 600rpm, pH 8, and $30^{\circ}C$, respectively. In methanol-utilizing continuous culture, the maximum production rate of the cells was 1.48g, dry wt./1/hr at a dilution rate of $0.45hr^-$, and the cell yield was 0.46g. dry wt./g. glucose. In the methanol-utilizaing continuous culture, the maximum production rate of the cells was 0.33 7g. dry wt./1/hr. at a dilution rate of $0.125hr^-$ and the cell yield was 0.44g dry cell/g. methanol. The contents of protein of the cells increase with the increase ingrowing temperature (from 15 to $30^{\circ}C$), more or less, while the contents of RNA nad carbohydrate of the cells decreased. However, DNA contents of cells growth under the various temperature ranges didn't change. As the temeprature of cultivation rises at a constant dilution rate, the efficiency of RNA in protein synthesis was increased, showing the decreases in the ratio of RNA to protein.

  • PDF

Synthesis and Characterization of Sulfonated Poly(phthalazinone ether sulfone)(sPPES)/Silica Membrane for Proton Exchange Membrane Materials

  • Kim, Dae Sik;Park, Ho Bum;Nam, Sang Young;Rhim, Ji Won;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.44-54
    • /
    • 2004
  • Organic-inorganic composite membranes based on sulfonated poly(phthalazinone ether sulfone) (sPPES)/silica hybrid were prepared using the sol-gel process under acidic conditions. The sulfonation of PPES with concentrated sulfuric acid as sulfonation agent was carried out to prepare proton exchange membrane material. The behaviors of the proton conductivity and methanol permeability are depended on the sulfonation time (5-100 hr). The hybrid membranes composed of highly sulfonated PPES (IEC value: 1.42 meq./g) and silica were fabricated from different silica content (5-20 wt%) in order to achieve desirable proton conductivity and methanol permeability demanded for fuel cell applications. The silica particles within membranes were used for the purpose of blocking excessive methanol cross-over and for forming the path way to transport of the proton due to absorbing water molecules with ≡SiOH on silica. The presence of silica particles in the organic polymer matrix results in hybrid membranes with reduced methanol permeability and improved proton conductivity.

Inhibitory Effect of the Methanol Extract of Fructus Forsythiae on the Melanogenesis (연교 메탄올추출물의 멜라닌생성 억제효과)

  • Jo, Mi-Gyeong;An, Byung-Sang;Mun, Yeun-Ja;Woo, Won-Hong
    • Korean Journal of Korean Medical Institute of Dermatology and Aesthetics
    • /
    • v.1 no.1
    • /
    • pp.41-52
    • /
    • 2005
  • The aim of this study was to investigate the effect of Fructus Forsythiae on the melanogenesis. To determine whether Fructus Forsythiae methanol extract suppress melanin synthesis in cellular level, HM3KO human melanoma cells were cultured in the presence of various concentrations of Fructus Forsythiae methanol extract and the effects on cell proliferation, tyrosinase activity and melanin contents were examined. Treatment with Fructus Forsythiae methanol extract inhibited tyrosinase activity, regulate melanin biosynthesis as the key enzyme in melanogenesis, in a dose-dependent manner. And also suppressed melanin contents as a dose dependent manner without cytotoxicity morphological change. It was observed that the color of cell pellets was totally different from the control. These results suggest that the inhibitory effect of Fructus Forsythiae methanol extract on melanogenesis is due to the suppression of tyrosinase in HM3KO cells and Fructus Forsythiae is a candidate for an efficient whitening agent.

  • PDF

Development of Solvent System for Enzymatic Synthesis of N-Benzoylaspartame (N-Benzoylaspartame의 효소적 합성을 위한 용매계의 선정)

  • Han, Min-Su;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.504-510
    • /
    • 1992
  • Several single or mixed water-miscible organic solvent systems were investigated to develop the most effective solvent system for enzymatic synthesis of N-benzoylaspartame(BzAPM). The BzAPM was prepared by immobilized thermolysin with using N-benzoyl-L-aspartic acid(Bz-Asp) and L-phenylalanine methyl ester(PheOMe). The solubilities of BzAPM and L-phenylalanine were highest in 4.5% methanol(1.89 and 1.79%, respectively) among the solvents system investigated while a mixed solvent system of 25% dimethyl sulfoxide(DMSO) and 20% polyethylene glycol(PEG) 200 showed relatively high values. The synthetic activity of BzAPM as well as initial reaction rate were found to be high in 45% methanol, 45% DMSO and a mixed solvent of 25% DMSO and 20% PEM 200. The imobilized thermolysin was most stable in 25% DMSO and 20% PEG 200 during storage at $40^{\circ}C$ for 42 days. PheOMe in the same solvent system was also found fairly stable against non-enzymatic decomposition at $40^{\circ}C$. Based on the synthetic efficiency and stability, the solvent system containing 25% DMSO and 20% PEG 200 was selected to be appropriate for the enzymatic synthesis of BzAPM.

  • PDF

Synthesis of Methanol and Formaldehyde by Partial Oxidation of Methane (메탄의 부분산화에 의한 메탄올 및 포름알데히드의 합성)

  • Hahm, Hyun-Sik;Shin, Ki-Seok;Kim, Song-Hyoung;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • Methanol and formaldehyde were produced directly by the partial oxidation of methane. The catalysts used were mixed oxides of late-transition metals, such as Mn, Fe, Co, Ni and Cu. The reaction was carried out at $450^{\circ}C$, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by XRD, TPD and BET apparatus. Of the catalysts, A-Mn0.2-6, which contains 0.2 mole of Mn and calcined at $600^{\circ}C$, showed the best catalytic activity: 3.7% methane conversion, and 30 and 28% methanol and formaldehyde selectivities, respectively. The catalytic activity was changed with the content of Mn and the calcination temperature. Catalytic activity increased with the specific surface areas of the catalysts. With XRD, it was found that the structure of the catalysts are changed with calcination temperature. Through $O_2-TPD$ experiment, it was found that the catalysts showing good catalytic activity showed $O_2$ desorption peak around $800^{\circ}C$.

Effects of methanol extract of Cyperus rotundus on the growth, acid production, adhesion, and insoluble glucan synthesis of Streptococcus mutans (향부자 메탄올 추출물의 Streptococcus mutans에 대한 성장, 산생성, 부착 및 비수용성 글루칸 합성 억제에 미치는 영향)

  • Yu, Hyeon-Hee;Seo, Se-Jeong;Kim, Yeon-Hwa;Lee, Hae-Youn;Lee, Yong-Wuk;Jeon, Byung-Hun;You, Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.370-374
    • /
    • 2005
  • Streptococcus mutans (S. mutans) is known as the causative bacterial playing the most important role informing plaque and it is being noticed as major causative bacteria of dental caries. Therefore, development of more effective, substantial and safe preventive agent against dental caries and periodontal disease is honestly required. The present study was designed to investigate the effect of Cyperus rotundus (Cyperaceae) methanol extracts on the growth, acid production, adhesion, and insoluble glucan synthesis of S. mutans. The methanol extract of C. rotundus showed concentration dependent inhibitory activity against the growth and acid production of S. mutans, and produced significant inhibition at the concentration of 0.5, 1, 2 and 4 mg/ml compared to the control group. The extracts markedly inhibited S. mutans adherence to HA treated with saliva, and cell adherence was repressed by more than 50% at the concentration of 0.5 mg/ml and complete inhibition was observed at the concentration of 4 mg/ml. On the activity of glucosyltransferase which synthesizes water insoluble glucan from sucrose, methanol extract of C. rotundus showed more than 10% inhibition over the concentration of 2 mg/ml. Thus, the application of C. rotundus can be considered a useful and a practical method for the prevention of dental caries.

New Efficient Synthesis of 3-Carboxylquinolines

  • Kirankumar, S.;Rambabu, D.;Sekhar, N. Chandra;Prasad, A.S.G.;Rao, M.V. Basaveswara
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.3
    • /
    • pp.322-327
    • /
    • 2012
  • Rapid and efficient synthesis of substituted 3-carboxylquinoline derivatives from 4-chloro-3-formylcoumarin and substituted anilines using 30% $H_2SO_4$ in methanol at room temperature within the duration of 5-30 min., through domino condensation-cyclization-ring opening reaction.