It would be clear that the constituents of the leaf surface lipid is ye비 important as an evaluation index of tobacco leaf quality since the quality of tobacco specific aroma with leaf species depends on the contents of the lipid and the strength of the aroma is determined by the amounts of the lipid secreted. For the reason, a rapid and peproducible method to quantify DVT, which is a kind of lipid, has been studied. The biosynthesis procedure of DVT in leaf growing processes, and the volatile or decompositional characters of DVT in leaf drying processes were also discussed. In consequence, it might be possible to get the data available to the cultivation of better tobacco leaf and the manufacture of cigarettes with better aroma and taste. The results obtained from this study are as follows. 1. Chloroform/dichloromethane solvent was better than chloroform alone for DVT extraction. The extraction yields of the leaf surface lipid were about 5% 2. The extractives with dichloromethane were treated by silylation with BSTPa and the quantitative analysis of DVT was carried out using SE -54 fused silica capillary column. It was found that rapid and reproducible data could be obtained from these methods. 3. In flue - cured tobacco species, DVT contents were $30.3\mu\textrm{g}/cm^2$ in the beginning stage of leaf drying processes and $12.1\mu\textrm{g}/cm^2$ corresponded to 30% levels of the beginning stage, in the end stage. 4. DVT contents in Burley mere 2 times as large as those in fluecured tobacco. DVT in the upper stalk position of leaf was 3 times larger than that in the lower stalk position. 5. DVT of tobacco leaves was decomposed by $SO_2$ gas or the sun light. The decomposition rate was largest in the sample used methanol as a extraction solvent.
Kim, Ji-Ho;Choi, Duck-Kyun;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
Journal of Hydrogen and New Energy
/
v.22
no.5
/
pp.649-655
/
2011
Methane direct cracking can be utilized to produce $CO_x$ and $NO_x$-free hydrogen for PEM fuel cells, oil refineries, ammonia and methanol production. We present the results of a systematic study of methane direct cracking using a mixed conducting oxide, Y-doped $BaZrO_3$ ($BaZr_{0.85}Y_{0.15}O_3$), membrane. In this paper, dense $BaZr_{0.85}Y_{0.15}O_3$ membrane with disk shape was successfully sintered at $1400^{\circ}C$ with a relative density of more 93% via addition of 1 wt% ZnO. The ($BaZr_{0.85}Y_{0.15}O_3$) membrane is covered with Pd as catalyst for methane decomposition with an DC magnetron sputtering method. Reaction temperature was $800^{\circ}C$ and high purity methane as reactant was employed to membrane side with 1.5 bar pressure. The $H_2$ produced by the reaction was transported through mixed conducting oxide membrane to the outer side. In addition, it was observed that the carbon, by-product, after methane direct cracking was deposited on the Pd/ZnO-$BaZr_{0.85}Y_{0.15}O_3$ membrane. The produced carbon has a shape of sphere and nanosheet, and a particle size of 80 to 100 nm.
To stabilize omeprazole(OMP), ethylenediamine(ED) complex of omeprazole(OMPED) was prepared by reaction between OMP and ED in methanol, and the complex formation was confirmed by the instrumental analysis, i.e., IR, DSC, EA, NMR, MS and XRD. The rates of decomposition of OMP and OMPED in aqueous solution and the shelf lives at standard temperature were measured by accelerated stability analysis. The results are summarized as follows; The mole ratio of OMP and ED in OMPED complex is 1:1, the energy of formation within OMPED might be combined between polar imidazole group of OMP with induced a dipole amine group in the readily polarizable ED molecule. At standard temperature the degradation rate constant of OMP in aqueous solution is $2.540{\times}10^{-2}\;hr^{-1}$ and the shelf life is 4.15 hrs, and in the case of OMPED the degradation rate constant is $7.986{\times}10^{-4}\;hr^{-1}$ and the shelf life is 131.96 hrs. So, the OMPED has about 31 times longer shelf life than OMP. The activation energy of OMP and OMPED are 5.23 and 18.55 kcal $mole^{-1}$ respectively. The stability of OMP is dependent chiefly on pH in the solutions and it decomposes readily in acidic medium by hydrogen ion catalized reaction but becomes stable beyond pH 9.0. In case of the ED-complex, OMPED is stable in neutral as well as in dilute acidic solutions even in pH 6, OMPED is very stable to light(UV), that is, the rate constant and shelf life of OMP are $k=1.0188{\times}10^{-2}\;day^{-1}$, $T_{90%}=4.5 \;days$, on the other hand, the those of OMPED are $k=7.138{\times}10^{-4}\;day^{-1}$, $T_{90%}=64.1\;days$, respectively. From the above results, it is thought that new dosage forms could be developed by using the OMPED as a potential OMP complex.
Thermal behavior of poly (methyl methacrylate) was analyzed in the presence of tin (IV) chloride. Five different proportions - polymer to additive - were selected for casting films from common solvent. TG, DTG and DTA were employed to monitor thermal degradation of the systems. IR and py-GC-MS helped identify the decomposition products. The blends start degrading at a temperature lower than that of the neat polymer and higher than that of the pure additive. Complex formation between tin of additive and carbonyl oxygen (pendent groups of MMA units) was noticed in the films soon after the mixing of the components in the blends. The samples were also heated at three different temperatures to determine the composition of residues left after the expulsion of volatiles. The polymer, blends and additive exhibited a one step, two-step and three-step degradation, respectively. $T_0$ is highest for the polymer, lowest for the additive and is either $60^{\circ}C$ or $70^{\circ}C$ for the blends. The amount of residue increases down the series [moving from blend-1 (minimum additive concentration) to blend-5 (maximum additive concentration)]. For blend-1, it is 7% of the original mass whereas it is 16% for blend-5. $T_{max}$ also goes up as the concentration of additive in the blends is elevated. The complexation appears to be the cause of observed stabilization. Some new products of degradation were noted apart from those reported earlier. These included methanol, isobutyric acid, acid chloride, etc. Molecular-level mixing of the constituents and "positioning effect" of the additive may have brought about the formation of new compounds. Routes are proposed for the appearance of these substances. Horizontal burning tests were also conducted on polymer and blends and the results are discussed. Activation energies and reaction orders were calculated. Activation energy is highest for the polymer, i.e., 138.9 Kcal/mol while the range for blends is from 51 to 39 Kcal/mol. Stability zones are highlighted for the blends. The interaction between the blended parts seems to be chemical in nature.
Three curcuminoids [curcumin (CUR), demethoxycurcumin(DEM), bisdemethoxycurcu in (BIS)] are major yellow pigments in turmleric (Curcuma longa L.) root. Contents of curcuminoids in turmeric roots collected from 6 locations were analyzed using, high performance liquid chromatography (HPLC) equipped with reversed-phase column, an UV-Vis detector at 420nm, and eluted with a mixture of acetonitrile: $0.1\%$ acetic acid in water (50 : 50, v/v) as mobile phase. The stability of curcuminoid pigments in $80\%$ methanol extract solution were investigated during storage in a freezer at $-20^{\circ}C$, room temperature in the dark, and light condition. Calibration curves for the determination of curcuminoids were made with significant linearity $(r^2=0.999**)$. Average content of total curcuminoids was 171.5 mg/g, with 91.6 mg/g of CUR, 56.9 mg/g of DEM, and 23.0 mg/g of BIS. Amount of curcuminoids during storage in a freezer was almost not changed while those in room temperature wert reduced and rapid degradation appeared after 60 days. Within 90 days, about $50\%$ curcuminoid decreased in the dark and about $70\%$ in the light condition, indicating the decomposition of curcuminoid pigments followed under light and heat.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.1B
/
pp.97-103
/
2009
The decompostion characteristics of NAPL TCE in cement/slag/Fe(II) system were studied with various TCE concentration and amounts of binders (cement/slag) For analyses of the TCE degradation by cement/slag/Fe(II), TCE solution injected using gas-tight syringe after TCE solution dissolved a methanol. Initial concentrations of TCE are 0.42 mM, NAPL condition 11.7 mM and saturated condition 16.8 mM respectively. The result showed that the cases of 8.4 mM and 4.2 mM are decreased 88% of total TCE concentration within 18 days. NAPL condition 11.7 mM was decreased 84% within 50 days and saturated condition 16.8 mM was decreased 60% of total TCE concentration within 60 days respectively. This showed that degradations of TCE in various concentrations were in one kind reaction as pseudo-first-order. TCE was dissolved as aqueous solution before degraded. The reaction rate was increased $0.12day^{-1}$, $0.24day^{-1}$, $0.31day^{-1}$ when the mass of media 0.1, 0.2, 0.3 S/L rate was increased. TCE reaction speed is affected by cement/slag surface ares in this system. When HDTMA, experimental facter, was added, TCE decomposition rate was high despite the high concentration of NAPL. and The decompostion characteristics of NAPL TCE in cement/slag/Fe(II) system were studied by using modeling.
The chemical structure of glycolipid of Selenomonas ruminantium cell wall was to be elucidated. The bacterial cells were treated in hot TCA and the glycolipid fractions were extracted by the solvent $CHCl_3\;:\;CH_3OH$ (1 : 3). The extracted glycolipids fraction was further separated by acetone extraction. The acetone soluble fraction was named as the spot A-compound. The acetone insoluble but ether soluble fraction was named as the spot B-compound. These two compounds were examined for elucidation of their chemical structure. The results were as follows: 1. The IR spectral analysis showed that O-acyl and N-acyl fatty acids were linked to glucosamine moiety in the spot A-compound. However in the spot B-compound in addition to O and N-acyl acids phosphorus was shown to be attached to glucosamine. 2. It was recognized by gas liquid chromatography that spot A compound contained beta-OH $C_{13:0}$ fatty acid in predominance in addition to the fatty acid with beta-OH $C_{9:0}$, whereas the spot B compound was composed of the predominant fatty acid of beta-OH $C_{13:0}$ with small amount of beta-OH $C_{9:0}$. 3. According to the paper chromatographic analysis of hydrazinolysis products of the spot A compound, a compound of a similar Rf value as the chitobiose was recognized, which indicated a structure of two molecules glucosamine condensed. The low Rf value of the hydrazinolysis product of the spot B-compound confirmed the presence of phosphorus attached to glucosamine. 4. The appearance of arabinose resulting from. ninhydrin decomposition of the acid hydrolyzate of the spot A compound indicated that the amino group is attached to $C_2$ of glucosamine. 5. The amount of glucosamine in the N-acetylated spot A compound decreased in half of the original content by the treatment. with $NaBH_4$, indicating that there are two molecules of glucosamines in the spot A compound. The presence of 1, 6-linkage between two molecules of glucosamine was suggested by the Morgan-Elson reaction and confirmed by the periodate decomposition test. 6. By the action of ${\beta}-N-acetyl$ glucosaminidase the N-acetylated spot A compound was completely decomposed into N-acetyl glucosamine, whereas the spot B compound was not. This indicated the spot A compound has a beta-linkage. 7. When phosphodiesterase or phosphomonoesterase acted on $^{32}P-labeled$ spot B compound, $^{32}P$ was not released by phosphodiesterase, but completely released by phosphomonoesterase. This indicated that one phosphorus is linked to glucosamine moiety. 8. The spot A compound is assumed to have the following chemical structure: That is glucosaminyl, ${\beta}-1$, 6-glucosamine to which O-acyl and N-acyl fatty acids are linked, of which the predominant fatty acid is beta-OH $C_{13:0}$ fatty acid in addition to beta-OH $C_{9:0}$ fatty acid 9. The spot B compound is likely to have the linkage of $glucosaminyl-{\beta}-1$, 6-glucosamine to which phosphorus is linked in monoester linkage. Furthermore both O-acyl and N-acyl fatty acids contained beta-OH $C_{13:0}$ fatty acid predominantly in addition to beta-OH $C_{9:0}$ fatty acid.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.