• 제목/요약/키워드: Methanol Oxidation

검색결과 298건 처리시간 0.025초

Pt-Ru/PPy/Nafion 복합체 전극의 메탄을 산화 특성 (Electrochemical Characteristics on Methanol Oxidation of Pt-Ru/PPy/Nafion Composite Electrode)

  • 조승구;박종호
    • 전기화학회지
    • /
    • 제7권4호
    • /
    • pp.201-205
    • /
    • 2004
  • 본 연구에서는 Pt-Ru 촉매를 $H_2PtCI_6$$RuCl_3$ 용액을 화학적 환원에 의해 전도성 고분자인 폴리피롤을 중합시킨 Nafion 막위에 직접 침적시켰다 EDS 분석 결과 Pt 및 Ru 촉매는 Ppy/Nafion 표면에 주로 분포하는 것을 알 수 있었다. 또한 폴리피롤이 중합된 Nanon 위에 침적시킨 Pt-Ru 촉매의 메탄올에 대한 전기화학적 산화특성을 CV로 평가하였다. 메탄을 산화 개시 전위는 Ru촉매에 사용이 증가함에 따라 음전위 방향으로 전이되었다. 따라서 폴리피롤이 중합된 Nafion표면에 Pt-Ru촉매를 직접 함침할 수 있었고. 메탄올 산화 특성을 나타내는 전극을 제작할 수 있었다.

Mo-Bi-V-Al 복합 산화물 촉매의 제조와 메탄 부분산화에 의한 메탄올 합성반응에 응용 (Preparation of Mo-Bi-V-Al Mixed Oxide Catalysts and Its Application to Methanol Synthesis by Partial Oxidation of Methane)

  • 박은석;신기석;안성환;함현식
    • Korean Chemical Engineering Research
    • /
    • 제50권1호
    • /
    • pp.41-49
    • /
    • 2012
  • 본 연구는 메탄 부분산화에 의한 메탄올 직접 합성을 위한 촉매 개발을 목표로 수행되었다. 이를 위하여 Mo-Bi-V-Al 복합 산화물 촉매를 제조하였으며, 제조 방법에 따른 촉매 물성을 비교하고, 제조한 촉매를 이용하여 메탄올 합성반응을 수행하여 그 결과를 검토하여 보았다. 졸-겔법으로 제조한 촉매가 공침법으로 제조한 촉매보다 비표면적이 훨씬 컸다. 입자가 작고 표면적이 클수록 부분산화반응보다는 완전산화반응이나 메탄올 산화반응이 더 잘 진행되어 메탄올의 선택도는 낮아지고 이산화탄소의 선택도는 증가하였다. 졸-겔법으로 제조한 촉매가 공침법으로 제조한 촉매보다 약 $20^{\circ}C$ 정도 더 낮은 온도에서 더 높은 메탄올 선택도(13%)를 보였다. 두 방법으로 제조한 촉매의 XRD 분석 결과 두 촉매의 결정 구조가 서로 달랐다. 본 반응에서 압력이 증가할수록 완전산화 반응이 억제되고 부분산화 반응이 일어나서 메탄올의 선택도는 증가하였고 이산화탄소의 선택도는 감소하였다.

Methanol Oxidation Effect on Carbon Supported Pt Particles Studied by 13C NMR, XRD, and TEM

  • Han, Kee Sung;Han, Oc Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권8호
    • /
    • pp.1121-1126
    • /
    • 2006
  • Methanol oxidation effect on carbon supported Pt was investigated as a function of Pt content in a sample which is closely correlated with Pt particle sizes. After prolonged methanol oxidation the Pt particle size did not change within the experimental error ranges. The $^{13}C$ chemical shift and linewidth of CO adsorbed on Pt show non-linear behavior simply due to the Pt particle size difference. The Pt size variation difference between this work and the previous reports of the particle growths is explained by the experimental temperature difference.

구리 프탈로시아닌 촉매의 VOCs 산화 특성 (Characteristics of VOCs Oxidation using Copper Phthalocyanine Catalysts)

  • 서성규;윤형선
    • 한국대기환경학회지
    • /
    • 제20권4호
    • /
    • pp.515-521
    • /
    • 2004
  • The catalytic oxidation of volatile organic compounds (methanol. acetaldehyde) has been characterized using the copper phthalocyanine catalyst in a fixed bed flow reactor under atmospheric pressure. The catalytic activity for pretreatment conditions was examined by this reaction system. The catalytic activity was ordered as follows: metal free-PC<Cu ($\alpha$)-PC<Cu ($\beta$)-PC The formaldehyde, carbon monoxide as a partial oxidation product of methanol and acetaldehyde over Cu ($\alpha$)-PC catalyst were detected and the conversions of methanol and acetaldehyde were accomplished above 95% over Cu ($\alpha$) -PC, Cu ($\beta$) - PC catalyst at 35$0^{\circ}C$. The pretreated metal free -PC, Cu($\alpha$)-PC, Cu($\beta$)-PC catalysts have been characterised by TGA, EA and XRD analysis. The catalytic activity pretreated with air and $CH_3$OH mixture (P-4) or air only (P-5) was very excellent. XRD and EA results showed that Cu($\alpha$)-PC, Cu($\beta$)-PC were destroyed an(1 new metal oxide such as CuO were formed.

Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

  • Shoucheng, Wen
    • 대한화학회지
    • /
    • 제58권1호
    • /
    • pp.76-79
    • /
    • 2014
  • Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is $440^{\circ}C$, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.

4성분계 복합 산화물 촉매 이용 메탄의 부분산화에 의한 메탄올 직접 합성 (Direct Methanol Synthesis by Partial Oxidation of Methane over Four-component Mixed Oxide Catalysts)

  • 김영국;이광혁;함현식
    • 한국응용과학기술학회지
    • /
    • 제31권3호
    • /
    • pp.446-452
    • /
    • 2014
  • Methanol was directly produced by the partial oxidation of methane with four-component mixed oxide catalysts. Four-component(Mo-Bi-Cr-Si) mixed oxide catalysts were prepared by the co-precipitation and sol-gel methods. The catalyst prepared by the sol-gel method showed about eleven times higher surface area than that prepared by the co-precipitation method. From the $O_2$-TPD experiment of the prepared catalysts, it was proven that there exists two types of oxygen species, and the oxygen species that participates in the partial oxidation reaction is the lattice oxygen desorbing around $750^{\circ}C$. The optimum reaction condition for methanol production was $420^{\circ}C$, 50 bar, flow rate of 115 mL/min, and $CH_4/O_2$ ratio of 10/1.5, providing methane conversion and methanol selectivity of 3.2 and 26.7%, respectively.

Particle Size Effect: Ru-Modified Pt Nanoparticles Toward Methanol Oxidation

  • Kim, Se-Chul;Zhang, Ting;Park, Jin-Nam;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3331-3337
    • /
    • 2012
  • Ru-modified Pt nanoparticles of various sizes on platelet carbon nanofiber toward methanol oxidation were investigated in terms of particle size effect. The sizes of Pt nanoparticles, prepared by polyol method, were in the range of 1.5-7.5 nm and Ru was spontaneously deposited by contacting Pt nanoparticles with the Ru precursor solutions of 2 and 5 mM. The Ru-modified Pt nanoparticles were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The methanol oxidation activities of Ru-modified Pt nanoparticles, measured using cyclic voltammetry and chronoamperometry, revealed that when the Pt particle size was less than 4.3 nm, the mass specific activity was fairly constant with an enhancement factor of more than 2 at 0.4 V. However, the surface area specific activity was maximized on Pt nanoparticles of 4.3 nm modified with 5 mM Ru precursor solution. The observations were discussed in terms of the enhancement of poison oxidation by Ru and the population variation of Pt atoms at vertices and edges of Pt nanoparticles due to selective deposition of Ru on the facets of (111) and (100).

Electro-Spun RuO2 나노선 지지체에 담지된 Pt촉매의 메탄올 Electro-Oxidation 특성 (Methanol Electro-Oxidation of Electro-Spun RuO2 Nanowire Supported Pt Catalysts)

  • 염용식;안효진
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.419-424
    • /
    • 2011
  • Pt nanoparticle catalysts incorporated on $RuO_2$ nanowire support were successfully synthesized and their electrochemical properties, such as methanol electro-oxidation and electrochemically active surface (EAS) area, were demonstrated for direct methanol fuel cells (DMFCs). After fabricating $RuO_2$ nanowire support via an electrospinning method, two different types of incorporated Pt nanoparticle electrocatalysts were prepared using a precipitation method via the reaction with $NaBH_4$ as a reducing agent. One electrocatalyst was 20 wt% Pt/$RuO_2$, and the other was 40 wt% Pt/$RuO_2$. The structural and electrochemical properties of the Pt nanoparticle electrocatalysts incorporated on electrospun $RuO_2$ nanowire support were investigated using a bright field transmission electron microscopy (bright field TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. The bright field TEM, XRD, and XPS results indicate that Pt nanoparticle electrocatalysts with sizes of approximately 2-4 nm were well incorporated on the electrospun $RuO_2$ nanowire support with a diameter of approximately 50 nm. The cyclic voltammetry results showed that the Pt nanoparticle catalysts incorporated on the electrospun $RuO_2$ nanowire support give superior catalytic activity in the methanol electro-oxidation and a higher electrochemically active surface (EAS) area when compared with the electrospun Pt nanowire electrocatalysts without the $RuO_2$ nanowire support. Therefore, the Pt nanoparticle catalysts incorporated on the electrospun $RuO_2$ nanowire support could be a promising electrode for direct methanol fuel cells (DMFCs).

Methanol oxidation behaviors of PtRu nanoparticles deposited onto binary carbon supports for direct methanol fuel cells

  • Park, Soo-Jin;Park, Jeong-Min;Lee, Seul-Yi
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.121-125
    • /
    • 2013
  • In this study, PtRu nanoparticles deposited on binary carbon supports were developed for use in direct methanol fuel cells using carbon blacks (CBs) and multi-walled carbon nanotubes (MWCNTs). The particle sizes and morphological structures of the catalysts were analyzed using X-ray diffraction and transmission electron microscopy, and the PtRu loading content was determined using an inductively coupled plasma-mass spectrometer. The electrocatalytic characteristics for methanol oxidation were evaluated by means of cyclic voltammetry with 1 M $CH_3OH$ in a 0.5 M $H_2SO_4$ solution as the electrolyte. The PtRu particle sizes and the loading level were found to be dependent on the mixing ratio of the two carbon materials. The electroactivity of the catalysts increased with an increasing MWCNT content, reaching a maximum at 30% MWCNTs, and subsequently decreased. This was attributed to the introduction of MWCNTs as a secondary support, which provided a highly accessible surface area and caused morphological changes in the carbon supports. Consequently, the PtRu nanoparticles deposited on the binary support exhibited better performance than those deposited on the single support, and the best performance was obtained when the mass ratio of CBs to MWCNTs was 70:30.

Pt Electrocatalysts Composited on Electro-Spun Pt Nanowires for Direct Methanol Fuel Cells

  • An, Geon-Hyoung;Ahn, Hyo-Jin
    • 한국재료학회지
    • /
    • 제22권8호
    • /
    • pp.421-425
    • /
    • 2012
  • Two types of Pt nanoparticle electrocatalysts were composited on Pt nanowires by a combination of an electrospinning method and an impregnation method with NaBH4 as a reducing agent. The structural properties and electrocatalytic activities for methanol electro-oxidation in direct methanol fuel cells were investigated by means of scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. In particular, SEM, HRTEM, XRD, and XPS results indicate that the metallic Pt nanoparticles with polycrystalline property are uniformly decorated on the electro-spun Pt nanowires. In order to investigate the catalytic activity of the Pt nanoparticles decorated on the electro-spun Pt nanowires, two types of 20 wt% Pt nanoparticles and 40 wt% Pt nanoparticles decorated on the electro-spun Pt nanowires were fabricated. In addition, for comparison, single Pt nanowires were fabricated via an electrospinning method without an impregnation method. As a result, the cyclic voltammetry and chronoamperometry results demonstrate that the electrode containing 40 wt% Pt nanoparticles exhibits the best catalytic activity for methanol electro-oxidation and the highest electrochemical stability among the single Pt nanowires, the 20 wt% Pt nanoparticles decorated with Pt nanowires, and the 40 wt% Pt nanoparticles decorated with Pt nanowires studied for use in direct methanol fuel cells.