• Title/Summary/Keyword: Methane-air combustion

Search Result 194, Processing Time 0.02 seconds

Structure of Edge Flame in a Methane-Oxygen Mixing Layer (메탄/순산소 혼합층에서 Edge Flame의 구조)

  • Choi, S.K.;Kim, J.;Chung, S.H.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

Combustion in Methane-Air Pre-Mixture with Water Vapor(1) - Progress of Flame Propagation (물 혼합에 의한 메탄-공기 예혼합기의 연소(1) - 화염전파과정)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.5-10
    • /
    • 2008
  • A flame speed of methane mixture of water vapor and air have been measured to study the process of flame propagation using schlieren photographs. The quantity of water vapor contained were changed 5% and 10% of total mixture, and equivalence ratio of mixture between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed that the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the reduction rate of burning velocity was smaller by increasing the water contents under the same ambient temperature. The effects of ambient temperature on burning velocity was decreased by increasing the water vapor contents.

  • PDF

Combustion in Methane-Air Pre-Mixture with Water Vapor(2)-Comparison of Burning Velocity (물 혼합에 의한 메탄-공기 예혼합기의 연소(2)-연소속도 비교)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.137-142
    • /
    • 2009
  • Burning velocity of methane-air mixtures with water vapor have been measured to study the process of flame propagation using schlieren photographs and computation. The computations were carried out for the burning velocity using premix code of Chemkin program to compare the experimental results. The quantity of water vapor contained were changed 5% and 10% of total mixtures, and equivalence ratio of mixtures between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed little difference between these two methods, the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the effect of ambient temperature was less significant by increasing the water contents on the burning velocity.

  • PDF

Combustion Characteristics in a Constant Volume Combustion Chamber with Sub-chamber(I) -Effect of Geometric Configurations of Passagehole on Combustion- (부실식 정적연소실내 연소특성에 관한 연구(I) -연락공의 기하학적 형상이 연소에 미 치는 영향-)

  • 김봉석;권철홍;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.66-79
    • /
    • 1993
  • To construct the design back data for a lean-burn gas engine, we have designed a constant volume combustion chamber with sub-chamber. With constant volume ratio of main-sub combustion chamber and constant equivalence ratio of methane-air mixture, the influence of geometric configurations(diameter, injection angle, number, length) of passagehole upon combustion characteristics were studied. It was found that combustion characteristics in the main combustion chamber were greatly influenced by the injection angle and length of passagehole.

  • PDF

Numerical Study on Vortex Structures in a Two-dimensional Bluff-Body Burner in the Transitional Flow Regime

  • Kawahara, Hideo;Nishimura, Tatsuo
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • Vortical structures are investigated numerically for both cold and combusting flows from a two-dimensional bluff-body burner in the transitional flow regime from steady to unsteady state. The Reynolds number of the central fuel flow is varied from 10 to 230 at a fixed air Reynolds number of 400. The flame sheet model of infinite chemical reaction and unit Lewis number are assumed in the simulation. The temperature dependence of the viscosity and diffusivity of the gas mixture is also considered. The vortex shedding is observed depending on the fuel flow. For cold flow, four different types of vortical structure are identified. However, for combusting flow of methane-air system the vortical structures change significantly due to a large amount of heat release during the combustion process, in contract to cold flow.

  • PDF

Propagation Speed Characteristics of Premixed Methane-Air Flame in a Combustion Chamber with Model of Engine Cylinder (엔진실린더 모형 연소실내의 메탄-공기 예혼합기의 화염전파속도 특성)

  • 전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 1998
  • Flame propagation speed characteristics of methante-air mixtures were experimentally investigated in combustion chamber modelled engine. Flame propagation process was known as a funtion of equivalence ratio initial pressure and initial temperature. Ion probe and schlieren photograph were applied to measure the local flame speed and flame radius in quiescent mixtures. Pressure was also measured to make sure of the reproducibility and to apply combustion analysis. Burning velocity was calculated from the flame propagation speed and combustion analysis. Flames were developed faster with higher initial pressure and initial temperature but showed maximum propagation speed at equivalence ratio 1.1 regardless of initial pressure and temperature. Local flame speed was maximum values at near midpoint between center and wall.

  • PDF

Preheated Air Combustion Characteristics of Partially Premixed Flame (부분 예혼합 화염의 예열공기 연소특성)

  • Lee, Seung-Young;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.65-70
    • /
    • 2001
  • OH radical and NOx have been measured in a methane-air partially premixed flame using PLIF technique to define preheated air combustion characteristics. The temperature of mixture is determined by 300K, 400K, 600K and 800K below the auto-ignition temperature respectively. Flame height increases as equivalence ratio increased. As initial enthalpy is supplied, the radius of flame was increased and much amount of yellow flame in rich equivalence ratio was observed. This is due to the faster burning velocity. Also initial oxidization begins earlier as the initial temperature of mixture increased. It means that height of premixed flame front decreased. This phenomenon can be observed OH PLIF image. The qualitative analysis of OH concentration in the PLIF image shows that overall OH concentration increases with equivalence ratio and the initial temperature of mixture increased. At the preheating temperature goes up, axial gradient of OH concentration is less steep than that of lower temperature condition. This may identify that combustion reacts continuously, so preheated air combustion can evade the local heating and make high temperature indiscriminately in the overall reaction zone.

  • PDF

A Study on Interacting $CH_4$-Air and $H_2/N_2$-Air Premixed Counterflow Flames (상호작용하는 메탄-수소 예혼합 대향류화염에 관한 연구)

  • Moon, Chang-Woo;Park, Jeong;Gwon, O.-Bung;Bae, Dae-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.38-42
    • /
    • 2010
  • Using a counterflow burner, downstream interactions between $CH_4$-air and $H_2/N_2$-Air premixed flames with various equivalence ratios has been experimentally investigated. Flame stability maps on triple and twin flames are provided in terms of global strain rate and equivalence ratio. Lean and rich flammable limits are examined for methane/air and hydrogen/nitrogen/air mixtures over the entire range of mixture concentrations in the interacting flames. Results show that these flammable limits can be significantly modified in the presence of interaction such that mixture conditions beyond the flammability limit can be still burn if it is supported by stronger flame. The experiment also discusses various oscillatory instabilities in a stability map.

Limit of equivalence ratio on mixing enhancement in rich flames. (과농 예혼합화염의 혼합촉진에 대한 당량비 한계)

  • Kim, Jin-Kook;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1996
  • An experimental investigation has been made with the objective of studying the limits of equivalence ratio on mixing enhancement in a tone excited jet flame. The jet is pulsed by means of a loudspeaker-driven cavity and rich flames(${\phi}>1.5$) are used. The excitation frequency is chosen for the resonant frequency identified as a pipe resonance due to acoustic excitation. Methane, propane and butane are used to examine the effect of mixture property on the limit of equivalence ratio. Mixing is always enhanced in a methane/air flame as the excitation intensity increases. Constant lower limits of equivalence ratio for mixing enhancement are present in cases of propane/air and butane/air flames irrespective of mean mixture velocities. The equivalence ratio limits are also found to be related to the flame instability ; the lower Le, the higher the limit of equivalence ratio. Under the equivalence ratio limits, cellular flames are generated as the excitation intensity increases. The amplitude of oscillating velocity for generating a cellular flame in the equivalence ratio limit is proportional to a mean mixture velocity irrespective of fuels.

  • PDF

Numerical Analysis of Combustion Characteristics during Mode Transfer Period in a Lean Premixed Gas Turbine for Power Generation (발전용 희박예혼합 가스터빈에서 연소모드변환 시기의 연소특성 해석)

  • Chung Jae Hwa;Seo Seok Bin;Kim Jong Jin;Cha Dong Jin;Ahn Dal Hong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.279-282
    • /
    • 2002
  • Recently, gas turbines for power generation adopt multistage DLN(Dry Low NOx) type combustion, where diffusion combustion is applied at low load and, with increase in load, the combustion mode is changed to lean premixed combustion to reduce NOx emissive concentration. However, during the mode changeover from diffusion to premixed flame, unfavorable phenomena, such as flashback, high amplitude combustion oscillations, or thermal damage of combustor parts could frequently occur. In the present study, to apply for the analysis of such unfavorable phenomena, three-dimensional CFD investigations are carried out to compare the detailed flow characteristics and temperature distribution inside the gas turbine combustor before and after combustion mode changeover. The fuel considered here is pure methane gas. A standard $k-{\varepsilon}$ turbulence model with wall function and a P-N type radiation heat transfer model, have been utilized. To analyze the complex geometric effects of combustor parts on combustion characteristics, fuel nozzles, a swirl vane f3r fuel-air mixing, and cooling air holes on the combustor liner wall, are included in this simulation.

  • PDF