• Title/Summary/Keyword: Methane fuel

Search Result 437, Processing Time 0.029 seconds

Low Temperature Methane Steam Reforming for Hydrogen Production for Fuel Cells

  • Roh, Hyun-Seog;Jun, Ki-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.153-156
    • /
    • 2009
  • Low temperature methane steam reforming to produce $H_2$ for fuel cells has been calculated thermodynamically considering both heat loss of the reformer and unreacted $H_2$ in fuel cell stack. According to the thermodynamic equilibrium analysis, it is possible to operate methane steam reforming at low temperatures. A scheme for the low temperature methane steam reforming to produce $H_2$ for fuel cells by burning both unconverted $CH_4$ and $H_2$ to supply the heat for steam methane reforming has been proposed. The calculated value of the heat balance temperature is strongly dependent upon the amount of unreacted $H_2$ and heat loss of the reformer. If unreacted $H_2$ increases, less methane is required because unreacted $H_2$ can be burned to supply the heat. As a consequence, it is suitable to increase the reaction temperature for getting higher $CH_4$ conversion and more $H_2$ for fuel cell stack. If heat loss increases from the reformer, it is necessary to supply more heat for the endothermic methane steam reforming reaction from burning unconverted $CH_4$, resulting in decreasing the reforming temperature. Experimentally, it has been confirmed that low temperature methane steam reforming is possible with stable activity.

Numerical Analysis on the Triple Flame Structure with Different Kinds of Fuel (3중화염의 구조에 미치는 연료종류에 관한 수치해석)

  • 최낙정
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.88-95
    • /
    • 1999
  • This study investigates the effects of different kind fuels on the flame structure by using the numerical simulation in triple flame made by a co-flowing fuels-air stream based on the elementary chemical reaction mechanism. Methane and Hydrogen were used as fuel for this study. In order to interpret the result of the study on numerical simulation Skeletal chemistry is employe as the elementary chemical reaction mechanism for methane Gutheil's as an offset ele-mentary chemical reaction mechanism for hydrogen. The result of this study is as follows. In com-parison between the apparent burning velocity change of triple flame and the one-dimensional pre-mixed flame hydrogen fuel flame is higher than methane fuel flame. The flame thrusts out for-ward in the down stream of the boundary between air-fuel mixture and air stream and a part of the flow is bent and forks out in this protruding flame so that a triple flame is originated.

  • PDF

Performance of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane

  • Kim, Young Jin;Lim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.325-330
    • /
    • 2015
  • Performance of solid oxide fuel cells (SOFCs), in comparison with that under hydrogen fuel, were investigated under direct internal reforming conditions. Anode supported cells were fabricated with an Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode for the present work. Measurements of I-V curves and impedance were conducted with S/C (steam to carbon) ratio of ~ 2 at $800^{\circ}C$. The outlet gas was analyzed using gas chromatography under open circuit condition; the methane conversion rate was calculated and found to be ~ 90% in the case of low flow rate of methane and steam. Power density values were comparable for both cases (hydrogen fuel and internal steam reforming of methane), and in the latter case the cell performance was improved, with a decrease in the flow rate of methane with steam, because of the higher conversion rate. The present work indicates that the short-term performance of SOFCs with conventional Ni+YSZ anodes, in comparison with that under hydrogen fuel, is acceptable under internal reforming condition with the optimized fuel flow rate and S/C ratio.

Techno-economic Analysis of Power To Gas (P2G) Process for the Development of Optimum Business Model: Part 2 Methane to Electricity Production Pathway

  • Partho Sarothi Roy;Young Don Yoo;Suhyun Kim;Chan Seung Park
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • This study shows the summary of the economic performance of excess electricity conversion to hydrogen as well as methane and returned conversion to electricity using a fuel cell. The methane production process has been examined in a previous study. Here, this study focuses on the conversion of methane to electricity. As a part of this study, capital expenditure (CAPEX) is estimated under various sized plants (0.3, 3, 9, and 30 MW). The study shows a method for economic optimization of electricity generation using a fuel cell. The CAPEX and operating expenditure (OPEX) as well as the feed cost are used to calculate the discounted cash flow. Then the levelized cost of returned electricity (LCORE) is estimated from the discounted cash flow. This study found the LCORE value was ¢10.2/kWh electricity when a 9 MW electricity generating fuel cell was used. A methane production plant size of 1,500 Nm3/hr, a methane production cost of $11.47/mcf, a storage cost of $1/mcf, and a fuel cell efficiency of 54% were used as a baseline. A sensitivity analysis was performed by varying the storage cost, fuel cell efficiency, and excess electricity cost by ±20%, and fuel cell efficiency was found as the most dominating parameter in terms of the LCORE sensitivity. Therefore, for the best cost-performance, fuel cell manufacturing and efficiency need to be carefully evaluated. This study provides a general guideline for cost performance comparison with LCORE.

Simultaneous Reduction of Smoke and NOx by Dimethoxy Methane and Cooled EGR Method in a DI Diesel Engine (직접 분사식 디젤기관에서 Dimethoxy Methane과 Cooled EGR방법을 이용한 Smoke와 NOx의 동시저감)

  • 최승훈;오영택;권규식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.66-72
    • /
    • 2004
  • In this study, the effects of oxygen component in fuel and exhaust gas recirculation(EGR) method on the exhaust emissions has been investigated for a D.I. diesel engine. It was tested to estimate change of exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has five kinds of blending ratio. Dimethoxy methane(DMM) contains oxygen component 42.5% in itself, and it is a kind of effective oxygenated fuel for reduction of smoke emission. It was affirmed that smoke emission was decreased with increasing of DMM blending ratio. But, NOx emission was increased compared with commercial diesel fuel. It was needed a NOx reduction counterplan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with DMM blended fuel and cooled EGR method(1015%).

Feasibility of a methane reduced chemical kinetics mechanism in laminar flame velocity of hydrogen enriched methane flames simulations

  • Ennetta, Ridha;Yahya, Ali;Said, Rachid
    • Advances in Energy Research
    • /
    • v.4 no.3
    • /
    • pp.213-221
    • /
    • 2016
  • The main purpose of this work is to test the validation of use of a four step reaction mechanism to simulate the laminar speed of hydrogen enriched methane flame. The laminar velocities of hydrogen-methane-air mixtures are very important in designing and predicting the progress of combustion and performance of combustion systems where hydrogen is used as fuel. In this work, laminar flame velocities of different composition of hydrogen-methane-air mixtures (from 0% to 40% hydrogen) have been calculated for variable equivalence ratios (from 0.5 to 1.5) using the flame propagation module (FSC) of the chemical kinetics software Chemkin 4.02. Our results were tested against an extended database of laminar flame speed measurements from the literature and good agreements were obtained especially for fuel lean and stoichiometric mixtures for the whole range of hydrogen blends. However, in the case of fuel rich mixtures, a slight overprediction (about 10%) is observed. Note that this overprediction decreases significantly with increasing hydrogen content. This research demonstrates that reduced chemical kinetics mechanisms can well reproduce the laminar burning velocity of methane-hydrogen-air mixtures at lean and stoichiometric mixture flame for hydrogen content in the fuel up to 40%. The use of such reduced mechanisms in complex combustion device can reduce the available computational resources and cost because the number of species is reduced.

A Study on Effects of Hydrogen Addition in Methane-Air Diffusion Flame (메탄-공기 확산화염에서 수소 첨가 효과에 관한 연구)

  • Park, June-Sung;Kim, Jeong-Soo;Kim, Sung-Cho;Keel, Sang-In;Yun, Jin-Han;Kim, Woo-Hyun;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.384-391
    • /
    • 2007
  • Hydrogen-blending effects in flame structure and NO emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane to the blending fuel of methane-hydrogen through $H_2$ molar addition up to 30%. Flame structure, which can be described representatively as a fuel consumption layer and a $H_2$-CO consumption layer, is shown to be changed considerably in hydrogen-blending methane flames, compared to pure methane flames. The differences are displayed through maximum flame temperature, the overlap of fuel and oxygen, and the behaviors of the production rates of major species. Hydrogen-blending into hydrocarbon fuel can be a promising technology to reduce both the CO and $CO_2$ emissions supposing that NOx emission should be reduced through some technologies in industrial burners. These drastic changes of flame structure affect NO emission behavior considerably. The changes of thermal NO and prompt NO are also provided according to hydrogen-blending. Importantly contributing reaction steps to prompt NO are addressed in pure methane and hydrogen-blending methane flames.

Effects of Addition of Hydrogen and Water Vapor on Flame Structure and NOx Emission In $CH_4$-Air Diffusion Flame (메탄-공기 확산화염에서 수소와 수증기 첨가가 화염구조와 NOx 배출에 미치는 효과)

  • Park, Jeong;Keel, Sang-In;Yun, Jin-Han
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.171-181
    • /
    • 2007
  • Blending effects of hydrogen and water vapor on flame structure and NOx emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane and pure hydrogen to the blending fuels of methane-hydrogen-water vapor through the molar addition of $H_2O$. Flame structure is changed considerably for hydrogen-blending methane flames and hydrogen-blending methane flames diluted with water vapor in comparison to pure methane flame. These complicated changes of flame structures also affect NOx emission behavior considerably. The changes of thermal NO and Fenimore NO are analyzed for various combinations of the fuel composition. Importantly contributing reaction steps to thermal NO and Fenimore NO are addressed in pure methane, hydrogen-blending methane flames, and hydrogen-blending methane flames diluted with water vapor.

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 1. Concentration of Fuel

  • Park, Woe-Chul
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • Structure of the counterflow nonpremixed flames were investigated by using Fire Dynamics Simulator(FDS) and OPPDIF to evaluate FDS for simulations of the diffusion flame. FDS, employed a mixture fraction formulation, were applied to the diluted axisymmetric methane-air nonpremixed counterflow flames. Fuel concentration in the mixture of methane and nitrogen was considered as a numerical parameter in the range from 20% to 100% increasing by 10% by volume at the global strain rates of $a_g = 20S^{-l} and 80S^{-1}$ respectively. In all the computations, the gravity was set to zero since OPPDIF is not able to compute the buoyancy effects. It was shown by the axisymmetric simulation of the flames with FDS that increasing fuel concentration increases the flame thickness and decreases the flame radius. The centerline temperature and axial velocity, and the peek flame temperature showed good agreement between the both methods.

The Bioenergy Conversion Characteristics of Feedlot Manure Discharging from Beef Cattle Barn

  • Oh, Seung-Yong;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.697-704
    • /
    • 2015
  • This study was carried out to assess bioenergy conversion efficiency by biogas and solid fuel production in the cattle feedlot manure discharged from beef cattle barn. Feedlot manure was sampled from the cattle farmhouse located in Yong-in, Gyeonggi during the mid-fattening stage, periodically. The chemical characteristics, BMP (Biochemical methane potential) and HV (Heating values) of feedlot cattle manures were analyzed. Total solid contents of cattle feedlot manure were in the range of 29.98~44.28%, and volatile solid contents were in the range of 23.53~24.47%. In the anaerobic digestion of cattle feedlot manure, the methane production potential has increased from 0.141 to $0.187Nm^3kg^{-1}-VS_{added}$. The methane production of fresh cattle feedlot manure showed the range $0.141{\sim}0.187Nm^3kg^{-1}$-Manure (average $0.047Nm^3kg^{-1}$-Manure), the LHVs (lower heating values) of the produced methane were in the range of $316{\sim}560kcalkg^{-1}$-Manure (average $400kcalkg^{-1}$-Manure). In the direct combustion of fresh cattle feedlot manure, the LHVs were measured in the range of $747{\sim}1,271kcalkg^{-1}$-Manure (average $916kcalkg^{-1}$-Manure), and LHVs of solid fuel which have the water content of 20% were in the range of $2,694{\sim}2,876kcalkg^{-1}$-Manure (average $2,791kcalkg^{-1}$-Manure). Then, the drying energy of average $443kcalkg^{-1}$-Manure was consumed in the production of solid fuel which has a water content of 20%. Therefore, the direct combustion of cattle feedlot manure showed about 2.3 times higher LHV than the LHV of methane produced by anaerobic digestion. And LHV of solid fuel was about 6.0 times higher than the LHV of methane produced by anaerobic digestion. Then, the production of solid fuel presented more bioenergy conversion efficiency than the biogas production in the bioenergy use of cattle feedlot manure.