• Title/Summary/Keyword: Methane amount

Search Result 305, Processing Time 0.024 seconds

C$_2H_2$ chemisorption for characterization of carbon black active sites (카본블랙 활성점 연구를 위한 아세틸렌 화학흡착)

  • Lee, Sang-Yup;Kwak, Jung-Hun;Yoon, Ki-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.80-83
    • /
    • 2007
  • In order to characterize the catalytically active sites on carbon black, acetylene chemisorption had been examined recently at 773 and 873 K by using a pulse technique. As the inject ion was repeated at 773 K, the adsorbed amount gradually decreased and eventually the adsorption did not occur any more. At 873 K a constant amount of $C_2H_2$ was consumed repeatedly after several injections. Good linear relationships were obtained between the methane decomposition rate at 1123 or 1173 K and the cumulative acetylene adsorption at 773 K or the constant acetylene consumption at 873 K. Reasonable models for the associative acetylene chemisorption at 773 K and the constant acetylene consumption at 873 K on the armchair face at the edges of graphene layers were proposed. The constant consumpt ion may be explained by the "$C_2H_2$-addition-hydrogen- abstract ion (CAHA)" mechanism.

  • PDF

Microwave-enhanced gasification of sewage sludge waste

  • Chun, Young Nam;Song, Hee Gaen
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.591-599
    • /
    • 2019
  • To convert sewage sludge to energy, drying-gasification characteristics during microwave heating were studied. During the gasification of carbon dioxide, the main products were gas, followed by char, and tar in terms of the amount. The main components of the producer gas were carbon monoxide and hydrogen including a small amount of methane and light hydrocarbons. They showed a sufficient heating value as a fuel. The generated tar is gravimetric tar, which is total tar. As light tars, benzene (light aromatic tar) was a major light tar. Naphthalene, anthracene, and pyrene (light polycyclic aromatic hydrocarbon tars) were also generated, but in relatively small amounts. Ammonia and hydrogen cyanide (precursor for NOx) were generated from thermal decomposition of tar containing protein and nitrogen in sewage sludge. In the case of sludge char, its average pore diameter was small, but specific area, pore volume, and adsorption amounts were relatively large, resulting in superior adsorption characteristics.

Development of Microwave-Matrix Reformer for Applying SOFC Stack (SOFC 스택 적용 마이크로웨이브-매트릭스 개질기 개발)

  • AN, JUNE;CHUN, YOUNG NAM
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.534-541
    • /
    • 2021
  • In this study, a novel microwave-matrix reformer was proposed to convert CH4, which is a major component, to a high quality hydrogen energy. And to identify this performance, it was investigated for O2/C ratio, steam feed amount and reformed gas recirculation which are affected for methane conversion and product gas yield. Through the parametric screening studies, optimal operating conditions were that O2/C ratio, steam feed amount and recirculation rate were 1.1, 10 mL/min and 30 L/min. In this conditions, CH4 conversion was 68.1%, H2 selectivity 77.2 and H2/CO ratio 2.62 which are possible applying SOFC stack for RPG (residential power generator).

Theoretical and numerical study to investigate characteristics of light-off and steady state of methane autothermal reactor for efficient light-off, high hydrogen yield and selectivity (시동 특성, 수소 생산 및 선택성 향상을 위한 자열개질기의 이론 및 수치해석적 연구)

  • Lee, Shin-Ku;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3353-3358
    • /
    • 2007
  • The present paper is devoted to investigate dynamic effect and steady-state performance of methane autothermal reformer theoretically and numerically. In order to simplify the complicated phenomena in the system, axisymmetric heterogeneous reactor model is developed. As autothermal reaction takes places on catalyst surface between bulk gas and catalyst, volume averaging method is incorporated using porous medium approach. To understand the start-up process which occurs in the reactor is highly important. Therefore, in this paper we get various goverining equations to find out transient and steady solutions and time scale for start-up introducing dimensionless variables. Start-up is a significant issue in reforming reaction for automobile system and fueling of SOFC-based auxiliary power units. This paper deals with characteristics of heat and mass transfer and predicted light-off time in the reformer as oxygen to carbon ratio ($O_2$/C) and amount of feeding gas.

  • PDF

Effects of EGR and Premixedness on NO Formation of Methane/Air Flames (EGR 및 예혼합 정도가 메탄/공기 화염의 NO 생성에 미치는 영향)

  • Lee, Won-Nam;Lee, Woong-Jae
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.63-74
    • /
    • 1999
  • The effects of EGR and premixedness on NO formation have been numerically investigated. The flame structure is classified into three categories; premixed flame($=1)$, rich/lean premixed flame(${\alpha}=0.6$ and 0.8) and diffusion flame(${\alpha}=0$). NO formation/destruction mechanisms are assorted to thermal, reburn and Fenimore mechanisms. The temperature of unburned gas is arranged to 298 and 500 K to have access to the condition in a real internal combustion engine. The results show that all three NO formation/destruction reaction rates in the fuel rich flame zone could be decreased by EGR for rich/lean premixed flames, while those in the fuel lean flame zone are not significantly changed. Near the stagnation plane, however, only the thermal NO reaction rate is decreased. The contribution of reburn and Fenimore mechanisms for the net NO production becomes less significant as the premixedness of a flame increases. The larger amount of NO reduction with EGR is expected under the higher temperature and/or higher fuel/air premixedness conditions due to the increased contribution of the thermal mechanism. The role of Fenimore and reburn mechanisms could be important for rich premixed and diffusion flames; therefore, the effect of EGR on NO reduction could vary with fuel/air premixedness. The premixedness of a partially premixed flame changes the flame structure and could affect the NO production characteristics.

  • PDF

Effect of Phospho-gypsum on reduction of methane emission from rice paddy soil

  • Ali, Muhammad Aslam;Lee, Chang-Hoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.131-140
    • /
    • 2007
  • Phospho-gypsum a primary waste by-product in phosphate fertilizer manufacturing industry and a potential source of electron acceptors, such as mainly of sulfate and a trace amount of iron and manganese oxides, was selected as soil amendment for reducing methane $(CH_4)$ emissions during rice cultivation. The selected amendment was added into potted soils at the rate of 0, 2, 10, and 20 Mg $ha^{-1}$ before rice transplanting. $CH_4$ flux from the potted soil with rice plant was measured along with soil Eh and floodwater pH during the rice cultivation period. $CH_4$ emission rates measured by closed chamber method decreased with increasing levels of phospho-gypsum application, but rice yield markedly increased up to 10 Mg $ha^{-1}$ of the amendment. At this amendment level, total $CH_4$ emissions were reduced by 24% along with 15% rice grain yield increment over the control. The decrease in total $CH_4$ emission may be attributed due to shifting of electron flow from methanogenesis to sulfate reduction under anaerobic soil conditions.

Thermodynamic Analysis of the Extraction Process and the Cold Energy Utilization of LNG (LNG추출과정과 냉열이용의 열역학적 해석)

  • Lee, G.S.;Chang, Y.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.120-131
    • /
    • 1995
  • Thermodynamic analysis of extraction process from the constant pressure LNG(Liquefied Natural Gas) vessel was performed in this study. LNG was assumed as a binary mixture of 90% methane and 10% ethane by mole fraction. The thermodynamic properties such as temperature, composition, specific volume and the amount of cold energy were predicted during extraction process. Pressure as a parameter ranges from 101.3kPa to 2000kPa. The result shows the peculiar phenomena for the LNG as a mixture. Both vapor and liquid extraction processes were investigated by a computer model. The property changes are negligible in the liquid extraction process. For the vapor extraction process, the temperature in the vessel increases rapidly and the extracted composition of methane decreases rapidly near the end of extracting process. Specific volume of vapor has the maximum and that of liquid has the minimum during the process. When pressure is increased, specific volume of vapor decreases and that of liquid increases. It was found that specific volume of vapor phase had a major effect on the heat absorption at constant pressure during vapor extraction process. If the pressure of the vessel increases, the total cold energy which can be utilized from LNG decreased.

  • PDF

A Study on Ammonia Formation with Nitrogen Impurity at a Natural Gas Steam Reforming Catalytic Process (소량의 질소를 포함한 천연가스 수증기 개질 반응에서 GHSV 변화에 따른 암모니아 생성 반응에 관한 연구)

  • KIM, CHUL-MIN;PARK, SANG-HYOUN;LEE, JUHAN;LEE, SANGYONG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.601-607
    • /
    • 2019
  • Ammonia would be formed in natural gas containing small amount of nitrogen reforming process in the process natural gas, which might damage the Pt catalyst and Prox catalyst. In the article, the effect of nitrogen contents on the formation of ammonia in the reforming process has been studied. In the experiments, Ru based and Ni based catalysts were used and the concentration of ammonia in the reformate gas at various gas hourly space velocity was measured. Experimental result shows that relatively higher ammonia concentration was measured with Ru based catalyst than with Ni based catalyst. It also shows that the concentration of ammonia increased rapidly after most of the methane converted into hydrogen. Based on the experimental results to reduce ammonia concentration it might be better to finish methane conversion at the exit position of the reforming reactor to minimize the contact time of catalyst and nitrogen with high concentration of hydrogen.

Combustion Characteristics of the SOFC Products for SOFC/Gas Turbine Hybrid Power Generation System (SOFC/가스터빈 혼합발전을 위한 SOFC 생성물의 연소특성)

  • Lee, Byeong Jun;Bae, Chul Han
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.44-52
    • /
    • 2014
  • Solid oxide fuel cell(SOFC) makes electric power using hydrogen or reformed from methane and emits high temperature products that contain flammable species like hydrogen, carbon monoxide and methane which varies with operation condition. SOFC/gas turbine integrated system which uses thermal and chemical energy of the discharges is more efficient than SOFC itself. Burning character of the SOFC products will affect the efficiency and stability of the system. Experiments were conducted to know the characteristics of the flame for two typical composition of SOFC products, i.e. start-up and steady state composition. When coflowing air temperature was higher than $600^{\circ}C$, auto-ignitin occurred for both fuels. Though start-up fuel has higher contents of hydrogen, it makes longer flame than steady state composition. It was inferred that the amount of oxidizer necessary to burn makes this phenomenon. Steady state composition fuel was unstable since it contains lots of water. Nozzle that had 6 holes, distance between each hole was 16.7 times of hole diameter, improved the stability of the flame.

Effect of ammonium nitrogen in anaerobic biofilter using live-stock-wastewater (축산폐수의 혐기성 고정법에 있어서 암모니아성 질소의 영향)

  • Eom, Tae-Kyu;Lim, Jung-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.43-53
    • /
    • 1997
  • In this research, the synthetic livestock wastewater was prepared to study the characteristics of organic matter removal, the change of VFA production, and the amount of gas production with respect to the change of ammonium nitrogen concentration in the waste using anaerobic fixed bed process, which is an anaerobic biofilm process. The HRT and operation temperature were 1 day and $35{\pm}1^{\circ}C$, respectively. Also, the characteristics of organic matter removal and the inhibitory effect on microorganism in the anaerobic process were studied on the organic loading and ammonium nitrogen concentration. The results obtained were as follows: For COD loading of $10kg/m^3$-day and five levels of ammonium nitrogen concentration ranging from 1,000 to 5,000 mg/L, organic removal efficiencies were about 81, 74, 67, 58, and 51%, and gas productions were 3,860, 3,520, 3,240, 3,020, and 2,790 ml/l-day, respectively. Average methane contents in the gas produced on COD loading of $10kg/m^3$-day was about 76%. Throughout the whole period of experiment, remaining VFA (as COD base) in the effluent was over 90% of remaining COD. This result indicated the inhibitory effect of high concentration of ammonium nitrogen through the facts that accumulated VFA was almost COD and organic removal efficiency decreased also with the increase of ammonium nitrogen. Especially, that implys which high concentration of ammonium nitrogen not only inhibits methane forming bacteria, but also acid forming bacteria.

  • PDF