• 제목/요약/키워드: Methane amount

검색결과 301건 처리시간 0.023초

표면개질 된 활성탄의 메탄흡장 특성 (Characteristics of methane sorption in surface modified activated carbon)

  • 윤석민;김주완;조원준;김영호;이영석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.73-76
    • /
    • 2007
  • In this study, methane gas adsorption ability of activated carbon (AC) with surface functional group effect, adsorbed methane amount was evaluated after nitric acid and ureatreatment of AC surface. Specific surface area and pore distribution of AC were studied though nitrogen adsorption isotherm at 77 K. Micro pore volume was calculated through H-K method. Adsorbed methane amount was evaluated through volume method at room temperature by using auto adsorption apparatus. Adsorbed methane amount of AC was found to increase with to specific surface area increase.Correlation proposed between the methane adsorption amount and surface nature indicates that the surface nature plays an important role on the adsorption amount at a given temperature.

  • PDF

산화탄소나노튜브를 이용한 메탄 하이드레이트 형성 (Effect of Oxidation Multi-Walled Carbon Nanotubes for Methane Hydrate Formation)

  • 박성식;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.11-16
    • /
    • 2010
  • Methane hydrate is crystalline ice-like compounds which formed methane gas enters within water molecules composed cavity and each other from physically-bond at specially temperature and pressure condition. $1m^3$ of methane hydrate can be decomposed into the maximum of $216m^3$ of methane gas under standard condition. If these characteristics of hydrate are utilized in the opposite sense, natural gas can be fixed into water in the form of a hydrate solid. Therefore the use of hydrate is considered to be a great way to transport and store natural gas in large quantity. However, when methane hydrate is formed artificially, the amount of gas that is consumed is relatively low, due to the slow reaction rate between water and methane gas. Therefore for practical purposes in the application, the present investigation focuses on increasing the amount of gas consumed by adding chemically oxidized OMWCNTs to pure water. The results show that when 0.003 wt% of oxidation multi-walled carbon nanotubes was added to pure water, the amount of gas consumed was almost four times more than that of pure water indicating its effect in hydrate formation and the hydrate formation time decreased at alow subcooling temperature.

Anaerobic Fermentation of Woody Biomass Treated by Various Methods

  • Nakamura, Yoshitoshi;Mtui, Godliving
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권3호
    • /
    • pp.179-182
    • /
    • 2003
  • Anaerobic fermentation was attempted to produce methane from the wood chip (Eucalyptus globulus). By the pretreatment of the wood chip using hot water with high temperature, NaOH, and steam explosion, the production of methane gas was enhanced. The pretreatment using Steam explosion resulted in more amount of methane gas produced than the treatment using either hot water or 1% (w/w) NaOH with high temperature, and the steam explosion at a steam pressure of 25 atm and a steaming time of 3 min was the most effective for the methane production. The amount of methane gas produced depended on the ratio of weight of Klason lignin, a high molecular weight lignin, in the treated wood chip.

Predicting the Methane Gas Generation Rate at Landfill Sites Using the Methane Gas Generation Rate Constant (k)

  • Chung, Jin-Do;Kim, Jung-Tae
    • Asian Journal of Atmospheric Environment
    • /
    • 제2권2호
    • /
    • pp.116-124
    • /
    • 2008
  • In this study, the Tier 2 method recommended by the Intergovernmental Panel on Climate Change (IPCC) was used to predict the methane generation rate at two landfill sites, designated as Y and C for purposes of this study, in South Korea. Factors such as the average annual waste disposal, methane emissions ($L_0$) and methane gas generation rate constant (k) were estimated by analyses of waste and the historical data for the landfills. The value of k was estimated by field experiments and then the changes in the methane generation rate were predicted through the year 2050, based on the value of k. The Y landfill site, which was in operation until the year 2008, will generate a total of 17, 198.7 tons by the end of 2018, according to our estimations. At the C landfill site, which will not be closed until the end of 2011, the amount of methane gas generated in 2011 will be 3,316 tons and the total amount of gas generated by 2029 will be 61,200 tons. The total production rate of methane gas at the C landfill is higher than that of the Y landfill. This indicates that the capacity of a landfill site affects the production rate of methane gas. However, the interrelation between the generation rate of methane and the value of k is weak. In addition, the generation of methane gas does not cease even when the operations at a landfill site come to a close and the methane gas production rate is at its highest at end of the operating life of a landfill site.

탄소나노튜브를 이용한 메탄 하이드레이트 형성 (Methane hydrate formation Using Carbon Nano Tubes)

  • 박성식;서향민;김남진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.549-552
    • /
    • 2009
  • Methane hydrate is crystalline ice-like compounds which formed methane gas enters within water molecules composed cavity at specially temperature and pressure condition, and water molecule and each other from physically-bond. $1m^3$ hydrate of pure methane can be decomposed to the maximum of $172m^3$ at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18~24% less than the liquefied transportation. However, when methane hydrate is formed artificially, the amount of consumed gas is relatively low due to a slow reaction rate between water and methane gas. In this study, for the better hydrate reaction rate, there is make nano fluid using ultrasonic dispersion of carbon nano tube. and then, Experiment with hydrate formation by nano fluid and methane gas reaction. The results show that when the carbon nano tubes of 0.004 wt% was added to pure water, the amount of consumed gas was about 300% higher than that in pure water and the hydrate formation time decreased.

  • PDF

천안백석매립장을 중심으로 한 메탄가스 발생량에 관한 연구 (The Study on Methane Gas Generation Rate from Chon-An Beck-Suk Landfill Site)

  • 정진도;김장우;정인권;배찬열
    • 한국환경과학회지
    • /
    • 제13권7호
    • /
    • pp.697-701
    • /
    • 2004
  • Most of methane gas result from waste matter in landfill, therefore the persons concerned take an increasing interest in management of gases in landfill. Infrared Gas Analyzer was used to measure components of gases, $CH_4,$ $CO_2,$ $O_2,$ through gas exhausted pipe. To measure amount of the gas flow meter(Portable Hot-Line Current Meter) was used and it was set at right angles with direction of the flow. In this research the total amount of methane gas produced in Beck-Suk Landfill was calculated through FOD method suggested by IPCC. This research found that in Chon-An Beck-Suk Landfill anaerobic resolution was made actively and the amount of methane gas produced there was 54.14%, which is higher than common figure, 50%, in other researches. The components of reclaimed waste matter, especially, organic waste matter can have a great effect of the amount of the greenhouse gases produced in landfill. We can expect that the amount of greenhouse gas will decrease from 2005, when it will be prohibited from carrying kitchen refuse and sludge into landfill.

매립지의 온실가스 배출량 산정 시나리오에 따른 온실가스 배출량 비교 (Comparison of Greenhouse Gas Emission from Landfills by Different Scenarios)

  • 김현선;최은화;이남훈;이승훈;정장표;이채영;이승묵
    • 한국대기환경학회지
    • /
    • 제23권3호
    • /
    • pp.344-352
    • /
    • 2007
  • Quantifying the methane emission from landfills is important to evaluate measures for reduction of greenhouse gas emissions. To estimate methane emission for the entire landfills from 1990 through 2004 in Korea, Tier 1 and 2 methodologies were used. In addition, five different scenarios were adopted to identify the effect of important variables on methane emission. The trends of methane emission using Tier 1 were similar to the disposed waste amount. Methane emission using Tier 2 increased as the degradation of waste was gradually proceeded. This result indicates that disposed waste amount and methane generation rate are the important variables for the estimation of methane emission by Tier 1 and 2, respectively. As for the different scenarios, methane emission was highest with scenario I that the entire landfills in Korea were regarded as one landfill. Methane emissions by scenario III and IV considering different $DOC_F$ values with the waste type and different MCF values with the height of waste layer, respectively, were underestimated compared to scenario II. This result indicates that the method of scenario I employed to most previous studies may lead to the overestimation of methane emission. Therefore, more careful consideration of the variables should be needed to develop the methodologies of greenhouse gas emission in landfills along with the characteristics of disposed waste in Korea.

Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.564-571
    • /
    • 2016
  • As the amount of rice straw collected increases, green manure crops are used to provide the needed organic matter. However, as green manure crops generate methane in the process of decomposition, we tested with different tillage depths in order to reduce the emission. The atmosphere temperature of the chamber was $25{\sim}40^{\circ}C$ during the examination of methane and soil temperature was $2{\sim}10^{\circ}C$ lower than air temperature. The redox potential (Eh) of the soil drastically fell right before irrigated transplanting and showed -300~-400 mV during the cultivating period of rice (7~106 days after transplant). When hairy vetch was incorporated to soil and the field was not irrigated, the generation of methane did not occur from 12 to 4 days before transplanting rice and started after irrigation. Regarding the pattern of methane generation during the cultivation of rice, methane was generated 7 days after transplanting, reached the pinnacle at by 63~74 days after transplanting, rapidly decreased after 86~94 days past transplanting and stopped after 106 days past transplanting. When tested by different soil types, methane emission gradually increased in loam and clay loam during early transplant, whereas it sharply increased in sandy loam. The total amount of methane emitted was highest in sandy loam, followed by loam and clay loam. In all three soil types, methane emission significantly reduced when tillage depth was 20 cm compared to 10 cm. The rice growths and yield were not affected by tillage depth. Therefore, reduction of methane emission could be achieved when application hairy vetch to the soil with tillage depth of 20 cm in paddy soil.

볏짚의 혐기성소화시 소화가스 생성에 관한 연구 (A Feasibility Study on Biogas Production from Anaerobic Digestion of Straw)

  • 박종안;허준무
    • 한국환경보건학회지
    • /
    • 제25권3호
    • /
    • pp.29-35
    • /
    • 1999
  • Quantity and composition of biogas from semi-continuous anaerobic digestion of straw were obtained experimentally in laboratory scale digesters fed with 1 liter of 5% straw-water mixture and maintained at 35$^{\circ}C$. Experiments were carried out for hydraulic retention time(HRT) of 8, 10 and 15days, respectively. The amount and composition of biogas produced were measured until steady-state was achieved for each run. The amount of biogas and methane percent go through a maximum and decrease continuously towards the steady-state after three times operation of hydraulic retention time(HRT). Methane gas production rates at steady-state increase with the increasing of HRT. Biogas production of 0.45 liter/day with 25% methane, 0.42 liter/day with 33.7% methane and 0.492 liter/day with 31.7% methane were obtained for 8, 10 and 15days of HRT, respectively. The high proportion of soluble carbohydrates present in straw makes the volatile fatty acids to build up within the digester causing a drop in pH that inhibits digestion. Regular control of pH is therefore necessary by adding alkalinity. Reductions in COD increase with increase in HRT. The stratification of plant material within the digester is different from that of manure, and modifications in design and operation of digesters may be necessary if they are fed with plant matter.

  • PDF

지오라이트 촉매를 이용한 메탄의 활성화 반응에서 일산화탄소/이산화탄소 첨가에 따른 영향 (Effects of $CO/CO_{2}$ Additives on The Reaction of Methane Activation using The Zeolite Catalyst)

  • 정귀영
    • 한국응용과학기술학회지
    • /
    • 제17권2호
    • /
    • pp.139-143
    • /
    • 2000
  • There appeared enhancements of the conversion of methane by adding a small amount of CO in the aromatization reaction of methane using the Mo-zeolite catalyst. In case of adding $CO_{2}$, $CO_{2}$ changed to CO first, and then the conversion reaction occurred. It was observed by using isotopes as reactants that CO is related to the aromatization reaction of methane.