• Title/Summary/Keyword: Methane/Air

Search Result 418, Processing Time 0.023 seconds

Structural Variation of Methane/Air Premixed Flame Caused by the Intervention of Ultrasonic Standing-wave (정상 초음파장의 간섭에 의한 메탄/공기 예혼합화염의 구조 변이)

  • Seo, Hang-Seok;Lee, Sang-Shin;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • An experimental study has been conducted to scrutinize into the influence of ultrasonic standing wave field on the variation of methane/air premixed flame structure. Visualization technique utilizing the Schlieren method is employed for the observation of premixed flame propagation. The shape of flame front and local flame velocity are measured according to the variation of reactants pressure and chamber opening/closing condition. The flame fronts affected by the standing wave are clearly distorted but the vertical locations of frontal dents do not undergo any appreciable change. The influence of standing wave on the flame front becomes more prominent as the flame propagates downward. It is found that the propagation velocity of flame front with excitation of standing wave is greater than the case without the excitation. It is eventually revealed that the flame is deformed to lotus-shaped one by the vivid interaction of ultrasonic standing-wave with the reflected wave coming from the right side.

Phase Equilibrium Conditions of Gas Hydrates for Natural Gas Solid Transportation and Storage (천연가스 고체수송 및 저장을 위한 가스 하이드레이트 상평형 조건에 대한 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Kim, Chong-Bo;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.266-273
    • /
    • 2008
  • Natural gas hydrates are ice-like solid substances, which are composed of water and natural gas, mainly methane. They have three kinds of crystal structures of five polyhedra formed by hydrogen-bonded water molecules, and are stable at high pressures and low temperatures. They contain large amounts of organic carbon and widely occur in deep oceans and permafrost regions. Therefore, they are expected as a potential energy resource in the future. Especially, $1m^3$ natural gas hydrate contains up to $172Nm^3$ of methane gas, de pending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming natural gas hydrate were numerically obtained in pure water and single electrolyte solution containing 3 wt% NaCl. The results show that the predictions match the previous experimental values very well, and it was found that NaCl acts as an inhibitor. Also, help gases such that ethane, propane, i-butane, and n-butane reduce the hydrate formation pressure at the same temperature.

Research on the Methane Recovery from Landfill Gas by Applying Nitrogen Gas Separator Membrane (질소 분리용 막을 이용한 매립가스내 메탄 회수 연구)

  • Chun, Seung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.586-591
    • /
    • 2013
  • This experiment was performed to enhance $CH_4$ purity of landfill gas by applying gas separator membrane for purified nitrogen gas production. 1:6 area ratios of $1^{st}$ to $2^{nd}$ membrane module was suitable for $CH_4$ recovery. After separation membrane system was installed, 249 tries were performed. Average permeability for $CH_4$ was 28.4% and for $CO_2$ was 94.3%. This can explain nitrogen gas separator membrane can be applied to collect $CH_4$ from LFG. However, nitrogen permeability only reached up to 16.5%. Therefore, the final purified landfill gas concentration was rounded up to 69.7% for $CH_4$, 4.3% for $CO_2$ and 26.0% for $N_2$. For the high degree of $CH_4$ purity, $N_2$ should be kept at least under 2.0% by controlling air inflow to landfill.

CO2 Suppression Characteristics of the Nitrogen-diluted Methane Counterflow Non-premixed Flame (질소로 희석된 대향류 메탄 비예혼합화염에서 CO2에 의한 소화특성)

  • Lee, Ho-Hyun;Oh, Chang Bo;Hwang, Cheol Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.42-48
    • /
    • 2013
  • The $CO_2$ suppression characteristics and flame structure of nitrogen-diluted methane counterflow non-premixed flame were studied experimentally and numerically. To mimic a situation where combustion product gases are entrained into a compartment fire, fuel stream was diluted with $N_2$. A gas-phase suppression agent, $CO_2$, was diluted in the air-stream to investigate the suppression characteristics by the agent. For numerical simulation, an one-dimensional OPPDIF code was used for comparison with experimental results. An optically-thin radiation model(OTM) was adopted to consider radiation effects on the suppression characteristics. It was confirmed experimentally and numerically that suppression limit decreased with increasing nitrogen mole fraction in the fuel stream. A turning point was found only when a radiation heat loss was considered and the extinguishing concentration for turning point was differently predicted compared to the experiment result. Critical extinguishing concentration when neglecting radiation heat loss was also differently predicted compared with the experimental result.

Computational Fluid Dynamics Analysis of Plate Type Reformer for MCFC (용융탄산염 연료전지용 평판형 개질기 열유동 전산유체역학 해석)

  • Shin, Dong-Hoon;Seo, Hye-Gyung;Lim, Hee-Chun;Lee, Sang-Duk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.403-408
    • /
    • 2006
  • The plate reformer consisting of combustion chamber and reforming chamber for 25 kW MCFC stack has been operated and computational fluid dynamics was applied to estimate reactions and thermal fluid behavior in the reformer. The methane air 2-stage reaction was assumed in the combustion chamber, and three step steam reforming reactions were included in the calculation. Flow uniformity, reaction rate and species distribution, and temperature distribution were analyzed. In particular, temperature distribution was compared with the measurements to show good agreement in the combustion chamber, however, inappropriate agreement in the reformer chamber.

Characteristics of Lifted Flame in Coflow Jets for Highly Diluted Fuel (동축류 버너에서 질소 희석된 연료의 부상 특성)

  • Won, S.H.;Cha, M.S.;Lee, B.J.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.9-15
    • /
    • 2000
  • Characteristics of lifted flames for highly diluted propane and methane with nitrogen in coflowing air is experimentally investigated. In case of propane, for various fuel mole fractions and jet velocities, three distinctive types of flames are observed; nozzle attached flames, stationary lifted flames, and oscillating lifted flames. When fuel jet velocity is much smaller than coflow velocity, the base of nozzle attached flame has a tribrachial structure unlike usual coflow difusion flames. Based on the balance mechanism of the propagation speed of tribrachial flame with flow velocity, jet velocity is scaled with stoichiometric laminar burning velocity. Results show that there exists two distinctive lifted flame stabilization; stabilization in the developing region and in the developed region of jets depending on initial fuel mole fraction. It has been found that lifted flame can be stabilized for fuel velocity even smaller than stoichiometric laminar burning velocity. This can be attributed to the buoyancy effect and flow visualization supports it. Lifted flames are also observed for methane diluted with nitrogen. The lifted flames only exist in the developing region of jet.

  • PDF

Stabilization of Inert-Gas-Diluted Co-Flow Diffusion Flame by a Pilot Flame (불활성기체로 희석된 동축류 확산화염의 파일럿화염에 의한 안정화)

  • Ahn, Taekook;Lee, Wonnam;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2015
  • An experimental study was conducted to find the effect of a pilot flame on the flammability of inert-gas-diluted methane and propane. The diffusion pilot flame was formed with propane at the innermost nozzle of a concentric triple co-flow burner. The main diffusion flame was formed with nitrogen-diluted methane or propane at the outermost nozzle of the burner. An air flow was located in-between. The results showed that the existence of the pilot flame helped stabilizing the main flame even at the flammability limit concentration of nitrogen-diluted fuel. The co-flow burner generated re-circulation zones and local variation of equivalence ratio depending on the flow rates of the reactants, which are known to help flame stabilization. Hot-wire experiments confirmed that both heating of the reactants and supplying of active chemical species by the pilot flame contributed to stabilization of the main flame. The results of this study would suggest a design concept for an efficient SVRU system that minimizes the emission of unburned hydrocarbon fuel from ship fuel tanks.

Combustion Characteristics of the SOFC Products for SOFC/Gas Turbine Hybrid Power Generation System (SOFC/가스터빈 혼합발전을 위한 SOFC 생성물의 연소특성)

  • Lee, Byeong Jun;Bae, Chul Han
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.44-52
    • /
    • 2014
  • Solid oxide fuel cell(SOFC) makes electric power using hydrogen or reformed from methane and emits high temperature products that contain flammable species like hydrogen, carbon monoxide and methane which varies with operation condition. SOFC/gas turbine integrated system which uses thermal and chemical energy of the discharges is more efficient than SOFC itself. Burning character of the SOFC products will affect the efficiency and stability of the system. Experiments were conducted to know the characteristics of the flame for two typical composition of SOFC products, i.e. start-up and steady state composition. When coflowing air temperature was higher than $600^{\circ}C$, auto-ignitin occurred for both fuels. Though start-up fuel has higher contents of hydrogen, it makes longer flame than steady state composition. It was inferred that the amount of oxidizer necessary to burn makes this phenomenon. Steady state composition fuel was unstable since it contains lots of water. Nozzle that had 6 holes, distance between each hole was 16.7 times of hole diameter, improved the stability of the flame.

Source Estimation of NMHC at KIST in Seoul in June 2001 (2001년 6월 서울 KIST에서의 NMHC 오염원 추정)

  • 임은정;김영성;김봉만
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.289-290
    • /
    • 2003
  • NMHC (non-methane hydrocarbons)는 $C_2$- $C_{l2}$의 탄화수소로 구성되며 NOx와 함께 오존을 생성시킨다. NMHC에 카보닐 화합물과, 카본수가 증가하여 휘발성이 떨어지더라도 광화학 반응성이 있는 탄화수소가 추가되면 우리에게 보다 익숙한 VOC (volatile organic compounds)가 된다 (Watson et al., 2001). NMHC는 자동차, 가스 및 석유 정제시설, 주유소, 세탁공업, 산업공정 등으로부터 배출된다. NMHC는 오존 등 광화학 산화제 뿐 아니라 미세입자 생성에도 직접 또는 간접적으로 관여하여 광화학 스모그를 유발시킬 수도 있다. (중략)략)

  • PDF

On the Effect of Presumed PDF and Intermittency on the Numerical Simulation of a Diffusion Flame

  • Riechelmann, Dirk;Fujimori, Toshiro
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.23-28
    • /
    • 2001
  • In the present work, the effect of PDF selection and intermittency on the result of the numerical simulation are examined by the simulation of a turbulent methane-air jet diffusion flame. As to the PDFs, beta-function and clipped Gaussian are considered. Results for the pure mixing jet are compared with experimental results. Then, the turbulent flame is calculated for the same conditions and the results obtained for the several models are compared. It is found that the clipped Gaussian distribution coupled with consideration of intermittency recovers the experimental data very well. As to the reacting flow results, the main overall properties of the turbulent jet diffusion flame such as maximum flame temperature are less affected by the choice of the PDF. Flame height and NO emissions, on the contrary, appear to be significantly influenced.

  • PDF