Simulation studies on catalytic methanation reaction in externally cooled tubular reactor filled with monolithic catalysts were carried out using a general purpose modelling tool $gPROMS^{(R)}$. We investigated the effects of operating parameters such as gas space velocity, temperature and pressure of feeding gas on temperature distribution inside the reactor, overall CO conversion, and chemical composition of product gas. In general, performance of methanation reaction is favored under low temperature and high pressure for a wide range of their values. However, methane production becomes negligible at temperatures below 573K when the reactor temperature is not high enough to ignite methanation reaction. Capacity enhancement of the reactor by increasing gas space velocity and/or gas inlet pressure resulted no significant reduction in reactor performance and heat transfer property of catalyst.
Syngas from gasification of coal can be converted to SNG(Synthesis Natural Gas) through gas cleaning, water gas shift, $CO_2$ removal, and methanation. One of the key technologies involved in the production of SNG is the methanation process. In the methanation process, carbon oxide is converted into methane by reaction with hydrogen. Major factors of methanation are hydrogen-carbon oxide ratio, reaction temperature and space velocity. In order to understand the catalytic behavior, temperature programmed surface reaction (TPSR) experiments and reaction in a fixed bed reactor of carbon monoxide have been performed using two commercial catalyst with different Ni contents (Catalyst A, B). In case of catalyst A, CO conversion was over 99% at the temperature range of $350{\sim}420^{\circ}C$ and CO conversions and $CH_4$ selectivity were lower at the space condition over 3000 1/h. In case of catalyst B, CO conversion was 100% at the temperature over $370^{\circ}C$ and CO conversions and $CH_4$ selectivity were lower at the space condition over 4700 1/h. Also, conditions to satisfy $CH_4$ productivity over 500 ml/h.g-cat were over 2000 1/h of space velocity in case of catalyst A and over 2300 1/h of space velocity in case of catalyst B.
The catalytic performance of silicon carbide supported nickel catalysts modified with or without second metal (Co, Cu and Zn) for the methanation of CO has been investigated in a fixed-bed reactor using a feed consisting of 25% CO and 75% $H_2$ without any diluent gas. It has been found that the introduction of Co species can clearly improve the catalytic activity of Ni/SiC catalyst, whereas the addition of Cu or Zn can result in a significant decrease in the catalytic activity. The characterizations by means of XRD, TEM, XPS, CO-TPD and $H_2$-TPR indicate that the addition of Co could decrease the particle size of active metal, increase active sites on the surface of methanation catalyst, improve the chemisorption of CO and enhance the reducibility of methanation catalysts. Additionally, the special interaction between Co species and Ni species is likely favorable for the dissociation of adsorbed CO on the surface of catalyst, and this may also contribute to the high activity of 5Co-Ni/SiC catalyst for CO methanation reaction. For 5Cu-Ni/SiC catalyst and 5Zn-Ni/SiC catalyst, Cu and Zn species could cover partial nickel particles and decrease the chemisorption amount of CO. These could be responsible for the low methanation activity. In addition, a 150h stability test under 2 MPa and $300^{\circ}C$ showed that 5Co-Ni/SiC catalyst was very stable for CO methanation reaction.
온실가스인 $CO_2$를 저감하기 위해 Pt계 촉매상 $CO_2$ methanation 반응에 관한 연구를 수행하였다. $Al_2O_3$의 전구체인 AlO(OH)를 열처리하여 지지체로 사용하였으며, 활성금속으로서 Pt를 사용하였다. XRD 분석결과, 활성금속인 Pt가 고르게 잘 분산되었음이 관찰되었으며, 지지체는 gamma phase의 $Al_2O_3$로 존재함을 확인할 수 있었다. 활성실험을 통해 $600^{\circ}C$로 열처리된 $Pt/Al_2O_3$ 촉매가 가장 우수한 전환율 및 선택도를 나타냄을 확인하였다.
One-dimensional packed bed reactor model accounting for interfacial and intra-particle gradients was developed and based on it numerical analyses were performed to investigate the dynamic behavior of a commercial scale methanation reactor. Methanation reaction was almost complete near the reactor inlet and gases with equilibrated composition were discharged from the reactor. Both the intra-particle temperature gradient and differential surface temperature rise were found to be severe near the reactor inlet. To reduce the possible degradation or fracture of catalyst particles and prevent local overheating on the catalyst, addition of inert material can be an effective way.
본 연구에서는 합성천연가스(synthetic natural gas, SNG)를 생산하기 위한 공정 개발을 위해 $H_2/CO$ 비가 낮은 합성가스를 이용하여 스팀과 함께 메탄화 반응을 수행하였다. 본 실험과 같은 조건에서는 수성가스 전환반응과 메탄화 반응이 동시에 일어나며, 스팀양이 적을 경우 촉매의 비활성화가 발생할 수 있다. 때문에, 스팀 양에 대한 반응특성을 수행하였으며, 더불어 고농도의 $CO_2$가 함유된 합성가스에 대한 메탄화 반응특성도 함께 고찰하였다. 그 결과, 스팀의 공급으로 인하여 촉매 층내의 온도를 낮출 수 있었으며, 메탄화 반응과 수성가스전환반응이 동시에 일어났음을 확인할 수 있었다. 고농도의 $CO_2$가 함유된 합성가스의 메탄화 반응에서는 조금 낮은 메탄 수율을 보였지만, 장기운전(1,000 h) 결과로부터 본 연구에서 수행한 합성가스의 조건을 SNG 공정에 적용이 가능할 것으로 확인되었다.
이산화탄소 메탄화 공정 적용을 위해 저온에서 우수한 활성을 나타내는 Ni/CeO2-X의 반응 특성을 조사하였다. 지지체인 CeO2-X는 Ce(NO3)3를 400 ℃에서 열처리하여 획득하였으며, 촉매는 함침법으로 제조되었다. 실험의 운전 변수로써 반응기 내부 압력, 유입가스 중 산소, 메탄, 황화수소의 조성 및 반응 온도에 대하여 수행하였다. Ni/CeO2-X를 이용한 이산화탄소 메탄화 반응에서 압력이 1 bar에서 3 bar로 증가함에 따라 CO2 전환율은 25% 이상 증가하였으며, 낮은 반응 온도에서 증가폭이 크게 나타났다. 유입가스 중 산소와 메탄은 촉매의 CO2 전환율을 최대 16, 4%씩 감소시켰으며, 산소와 메탄의 농도가 높아질수록 CO2 전환율의 감소율이 증가하는 경향을 나타내었다. 또한 황화수소는 촉매의 CO2 전환율을 최대 7% 감소시켰으며 촉매의 비활성화를 야기하였다. 본 연구의 결과들은 이산화탄소의 메탄화 공정 기초 자료로 유용하게 사용될 수 있을 것이다.
All the $Ni-Co-Ce-ZrO_2$ mixed oxides are prepared by co-precipitations methods. Methanation of CO and $H_2$ reaction is screened tested over different fractions of cerium (2, 4, 7 and 12 wt.%) over $Ni-Co/ZrO_2$ bimetallic catalysts are investigated. The mixed oxides are characterized by XRD, CO-Chemisorption, TGA and screened methanation of CO and $H_2$ at $360^{\circ}C$ for 3000 min on stream at typical ratio $CO:H_2=1:1$. In $Ni-Co/CeZrO_2$ series 2 wt.% Ce loading catalyst shows most promising catalyst for $CH_4$ selectivity than $CO_2$, which directs more stability with less coke formation. The high activity is attributed to the better bimetallic synergy and the well-developed crystalline phases of NiO, $ZrO_2$ and $Ce-ZrO_2$. Other bimetallic mixed oxides NCoZ, $NCoC^{4-12}Z$ has faster deactivation with low methanation activity. Finally, 2 wt.% Ce loading catalyst was found to be optimal coke resistant catalyst.
The kinetics of direct methanation over activated charcoal-supported molybdenum catalyst at 30 bar was studied in a cylindrical fixed-bed reactor. When the temperature was not higher than 400℃, the CO conversion increased with increasing temperature according to the Arrhenius law of reaction kinetics. While XRD and Raman analysis showed that Mo was present as Mo oxides after reduction or methanation, TEM and XPS analysis showed that Mo2C was formed after methanation depending on the loading of Mo precursor. When the temperature was as high as 500℃, the CO conversion was dependent not only on the Arrhenius law but also on the catalyzed reaction by nanoparticles, which came off from the reactor and thermocouple by metal dusting. These nanoparticles were made of Ni, Fe, Cr and alloy, and attributed to the formation of carbon deposit on the wall of the reactor and on the surface of the thermocouple. The carbon deposit consisted of amorphous and disordered carbon filaments.
일산화탄소, 수소와 같은 친환경 연료용 가스를 이용하여 메탄화 반응을 거쳐 합성 가스를 생성하였다. 이를 위한 촉매로 상용 알루미나에 담지된 Ni-Co 이원 금속을 증착침전법을 사용하여 제조하였으며 제조된 촉매의 촉매 활성 비교를 위하여 Ni, Co 단일 금속 촉매를 동일한 방법으로 제조하였다. 제조한 촉매를 TEM, XRD, TPR 분석을 실시하여 각각의 촉매 특성을 확인하였고 메탄화 반응을 진행하여 합성 가스 전환율을 측정하였다. 증착침전법으로 제조한 촉매의 경우, 금속 입자가 작은 크기로 분산된 것을 확인하였다. Ni, Co 두 금속이 담지된 이원 촉매는 Ni, Co가 각각 담지된 단일 금속 촉매에 비해 더욱 높은 활성을 나타내었으며 TPR 분석 결과, 이는 두 금속의 공존으로 인한 상호 작용을 통해 활성 수소를 보다 증가시켰기 때문으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.