• Title/Summary/Keyword: Methacrylic acid

Search Result 144, Processing Time 0.019 seconds

pH-dependent Swelling Properties of Methacrylic Acid Copolymer Hydrogels (pH 의존성 Methacrylic acid 공중합체의 팽윤특성)

  • Kim, Kyung-Chung;Lee, Seung-Jin
    • YAKHAK HOEJI
    • /
    • v.33 no.6
    • /
    • pp.372-376
    • /
    • 1989
  • Equilibrium swelling and pH-sensitivity of a polyelectrolyte copolymer hydrogel were controlled by employing copolymers with different hydrophilic-hydrophobic balances. Model pH-sensitive hydrogels, e.g., poly(methacrylic acid), poly(methacrylic acid-co-acrylamide), poly(methacrylic acid-co-2-hydroxyethylmethacrylate), poly(methacrylic acid-co-styrene) were synthesized at various monomer compositions. As hydrophobicity of the copolymer hydrogels increased, the equilibrium swelling decreased while the pH-sensitivity increased. In the case of poly(methacrylic acid-co-acrylamide), polymer-polymer interaction significantly affected the equilibrium swelling and provided a wide range control of pH-sensitivity.

  • PDF

Anti-gelling Effect of Poly(methacrylic acid, methyl methacrylate) on Cefuroxime Axetil Composition

  • Shim, Ji-Yeon;Wang, Hun-Sik;Kwon, Min-Chang;Park, Jun-Sang
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.237.1-237.1
    • /
    • 2003
  • Cefuroxime axetil, a broad spectrum antibiotic, has been known to form a gelatinous mass in contact with aqueous media, which could lead to poor dissolution. Therefore, this study was conducted for removing the gelling phenomenon and thereby obtaining a favorable dissolution profile. We have found that the addition of poly (methacrylic acid, methyl methacrylate) could not only inhibit the tendency of cefuroxime axetil to form a gel but also showed the good dissolution profile compared to the formula without poly (methacrylic acid, methyl methacrylate). (omitted)

  • PDF

Esterification of Methacrylic acid with Ethylene glycol over Heteropolyacid supported on ZSM-5 (ZSM-5 위에 지지된 Heteropolyacid 하에서 Methacrylic acid와 Ethylene glycol의 에스테르화 반응)

  • Prabhakarn, A.;Fereiro, J.A.;Subrahmanyam, Ch.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.14-18
    • /
    • 2011
  • Esterification of methacrylic acid with ethylene glycol was carried out over Heteropolyacids [HPA: $H_4SiW_{12}O_{40}$ (STA) and $H_3PW_{12}O_{40}$ (PTA)] supported on ZSM-5. For comparison, the same reaction was carried out over unsupported HPA, $H_2SO_4$, $BF_3$ and PTSA. Among the catalysts studied, HPA showed better activity compared to $H_2SO_4$, $BF_3$ and PTSA. Catalytic activity was compared with HPA supported ZSM-5 catalysts. Typical results indicated that 30 wt% PTA supported on ZSM-5 showed nearly the same activity as that of bulk PTA. It was found that the reaction follows first order kinetics with respect to methacrylic acid. The reaction products were identified by $^1H$-NMR and FT-IR.

Enzymatic Glycosylation of Acrylic Acid and Methacrylic Acid (아크릴산과 메타크릴산의 효소적 배당화)

  • 박돈희;김해성
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.82-86
    • /
    • 2001
  • Glyco-acrylate and methacrylate were synthesized by lipase-catalyzed glycosylation of acrylic acid, methacrylic acid and their vinyl esters with $\beta$-methyl fructoside and glycerol in t-butanol as a reaction medium. At the optimum conditions for enzymatic glycosylation of acrylic acid and vinyl methacrylate, we attained up to 80% conversion for glyco-acrylate from acrylic acid and 90% conversion for glyco-methacrylate from vinyl methacrylate. The polymerizable glyco-acrylates and methacrylate have biomedical application as hydrophilic monomers and hydration modifiers to be use for hydrogel contact lens formulation.

  • PDF

Carbonylative Cyclization of Unsaturated Carboxylic Acids by Palladium Complexes with Phosphines [III] Palladium (0, II)-Phosphine Complexes Catalyzed Cabonylation of Unsaturated Carboxylic Acids and It's Theoretical Studies (포스핀류가 배위된 팔라듐 착물에 의한 불포화카르복실산의 카르보닐화 고리반응 (제 3 보). 팔라듐 (0, II)-포스핀계 착물에 의한 불포화카르복실산의 카르보닐화 반응 및 그의 이론적 연구)

  • Myung-Ki Doh;Bong-Gon Kim;Maeng-Jun Jung;Young-Dae Song;Park Byung-Kak
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.10
    • /
    • pp.903-909
    • /
    • 1993
  • Reaction mechanism of palladium(0, II)-phosphines complexes catalyzed cyclocarbonylation for unsaturated carboxylic acid such as crotonic acid, methacrylic acid and 3-butenoic acid has been investigated by product analysis, molecular mechanics and extended Huckel molecular orbital method. Reaction of 3-butenoic acid with palladium(0, II)-phosphines catalyst gives palladium containing cycloester through intermediate palladium-olefin ${\pi}$ -complex in the catalytic carbonylation. Palladium(0, II)-phosphines complexes catalyze the cyclocarbonylation of 3-butenoic acid to give 3-methylsuccinic anhydride and glutaric anhydride. But ${\pi}$ -complexes with palladium(0, II)-phosphines and unsaturated carboxylic acids such as crotonic acid and methacrylic acid are not effective the catalytic cyclocarbonylation.

  • PDF

Synthesis of Poly(methacrylic acid)-functionalized SBA-15 and its Adsorption of Phenol in Aqueous Media

  • Vo, Vien;Kim, Hee-Jin;Kim, Ha-Yeong;Kim, Youngmee;Kim, Sung Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3570-3576
    • /
    • 2013
  • Poly(methacrylic acid)-functionalized SBA-15 silicas (denoted as P-x-PMA/SBA-15 where x is molar ratio of TSPM/(TEOS+TSPM) in percentage in the initial mixture) were synthesized by co-condensation of tetraethoxysilane and varying contents of 3-(trimethoxysilyl)propyl methacrylate in acidic medium with the block copolymer Pluronic 123 as a structure directing agent and then polymerization by methacrylic acid in the presence of ammonium persulfate as an initiator. The functionalized materials were characterized by PXRD, TEM, SEM, IR, and $N_2$ adsorption-desorption at 77 K. The investigation of phenol adsorption in aqueous solution on the materials showed that the poly(methacrylic acid)-functionalized mesoporous silicas possess strong adsorption ability for phenol with interaction of various kinds of hydrogen bonds. The adsorption data were fitted to Langmuir isotherms and the maximum adsorption capacity of the three functionalized materials P-5-PMA/SBA-15, P-10-PMA/SBA-15, and P-15-PMA/SBA-15 to be 129.37 mg/g, 187.97 mg/g, and 78.43 mg/g, respectively, were obtained. The effect of the pH on phenol adsorption was studied.

Radiation-Induced Graft Copolymerization of Methacrylic Acid and Methyl methacrylate onto Polyester.

  • Kang, Young-Kun;Chang, Hoon-Seun;Lee, Chong-Kwang;Park, Jae-Ho
    • Nuclear Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 1978
  • The radiation-induced graft polymerization of methacrlic acid and methyl methacrylate onto a polyester fabric was investigated with ${\gamma}$-ray as the radiation source, and the rate of grafting was examined. When acrylic acid, methacrylic acid, and methyl methacrylate were grafted onto a polyester fabric, grafting efficiency was depened upon the dielectric constant of the solvent in the monomer mixture. The yield of the graft polymerization was related to the total dose, the concentration of the monomer, and the concentration of the swelling agent. The melting point and the glass transition temperature of MA and MMA grafted copolymers were analysed by means of DTA. Physical properties, such as the moisture regain, the antistatic property, and the wicking time were measured.

  • PDF

Evaluation of Physico-chemical Properties of Acrylic Resin Hydrogel and their Application to Transdermal Delivery System

  • Chung, Uoo-Tae;Choi, Seung-Man;Kang, Kee-Long;Kim, Nak-Seo;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.224-230
    • /
    • 1995
  • Recently, many attempts have been made to use hydrogels of various polymers as delivery systems of various drugs and bioactive materials to prolong and control their phamacological activities. In this study, we have evaluated the physico-chemical properties of methacrylic acid-methyacrylic acid methyl ester copolymer 9Eudispert mv)m a acrylic resin hydorgel, and its application to transdermal delivery system. In the dissolution tests, the release rate of salicylic acid (SA) and sodium salicylate (SOd. SA) were faster than lidocain (LD) and lidocain-HCl(LD-HCl). As the concentration of Eudispert mv polymer increased, the extensibility of Eudispert mu hydrogel decreased, whereas the swelling ratio increased. The more NaOH and polymer concentration increased, the more osmotic pressure linearly increased. The skin permeation of Sod. SA, an acidic model drug, was remarkably enhanced by Eudispert mv hydrogel. All fatty acids, except for Sod. glycolate, dramatically increased the skin permeation flux in Eudispert mu hydrogel containing LD-Hcl, a basic model drug. Consequently, it is suggested that Eudispert mv hydrogel may be used as potential transdermal delivery vehicle.

  • PDF

Preparation of Molecularly Imprinted Poly(methacrylic acid) and Its HPLC Separation Characteristics of Retinoids (분자각인 Poly(methacrylic acid)의 제조 및 레티노이드 화합물의 HPLC 분리 특성)

  • 남기훈;권영돈;김덕준
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.710-717
    • /
    • 2002
  • Molecularly imprinted polymers were prepared in particle forms by crosslinking methacrylic acid (MAA)) using all trans-retinoic acid as a template. The HPLC column packed with the prepared molecular imprinted polymers showed high capability in separation of retinoid derivatives. The column capacity factor and selectivity increased with increasing MAA to template ratio when the incorporated template amount was fixed, as it statistically generated more binding sites between host molecules and template. Molecularly imprinted polymer particles prepared via an emulsion polymerization method were round-shaped and their sizes were more uniformly distributed, but their separation capability was inferior to those obtained by solution polymerization method. It was presumably because the loss of interaction strength between MAA and the template due to hydrogen bonding either between MAA and water or between template and water during the synthesis of molecularly imprinted polymers.