• Title/Summary/Keyword: Meter-out circuit

Search Result 15, Processing Time 0.018 seconds

Design and Measurement of SFQ DFFC and Inverter (단자속 양자 DFFC와 Inverter의 설계와 측정)

  • 정구락;홍희송;박종혁;임해용;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.17-20
    • /
    • 2003
  • We have designed and measured a SFQ(Single Flux Quantum) DFFC and an Inverter(NOT) for superconducting ALU(Arithmetic Logic Unit) development. To optimize the circuit, we used Julia, XIC, and L meter for circuit simulations and circuit layouts. The Inverter was consisted of a D Flip-Flop, a data input, a clock input and a data output. If a data pulse arrives at the inverter, then the output reads ‘0’ (no output pulse is produced) at the next clock period. If there is no input data pulse, it reads out ‘1’(output pulse is produced). The DFFC was consisted of a D flip-Flop, an Inverter, a Data in, a Clock in and two outputs. If a data pulse arrives at the DFFC circuit, then the output2 reads ‘1’ at the next clock period, otherwise it reads out ‘1’ to output1. Operation of the fabricated chip was performed at the liquid helium temperature and at the frequencies of 1KHz.

  • PDF

Design and Fabrication of a Surge Impedance Meter (서지임피던스 측정기의 설계 및 제작)

  • Kil, Gyung-Suk;Rhyu, Keel-Soo;Kim, Il-Kwon;Moon, Byung-Doo;Kim, Hwang-Kuk;Park, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.645-649
    • /
    • 2007
  • Ground systems flow fault currents into the ground, and suppress Ground Potential Rise (GPR) by the current. In this paper, we designed and fabricated a surge impedance meter to analyze the ground impedance in wide frequency ranges. The meter consists of a surge generator, a high speed sample/hold (S/H) circuit and an associated electronics. The surge generator produces surge voltage up to 5kV in ranges of $50\sim500ns$. Field tests were carried out to evaluate the surge impedance meter at a driven-rod ground system. The results showed that surge impedance of ground systems should be measured by various fast surge waveforms, since the impedance increases as the rise time of applied voltage increases.

Design and Implementation of Portable Electrostatic Meter Applicable to Industrial Site (산업 현장에 적용할 수 있는 휴대형 정전기 측정기 설계 및 구현)

  • Jang, Mun-Seok;Lee, Eung-Hyuk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.971-977
    • /
    • 2020
  • In this paper, We propose a portable electrostatic meter which can measure high voltage static electricity caused by friction to prevent fire or explosion accidents in grinding, crushing, power injection, transport, filling, dust removal, painting, and foreign matter removal processes. The proposed device not only shows static electricity strength in 4 steps with respect to distance and voltage but also gives warning with a buzzer, on process facilities that are likely to generate high voltage static electricity due to friction. The device is implemented by filtering the signal detected by the wireless antenna, amplifying the signal by 6 times, and passing the signal through the integrator circuit. Tests are carried out with an electrostatic discharge simulator. And the results show that 4 LEDs are turned on at the distance of 10cm, 3 LEDs at 12cm, 2 LEDs at 13cm, and 1 LED at 15cm, when a fixed voltage of 500V is given. And also, the tests show that the static electricity can be detected at 5cm on 100V, 10cm on 200V, 15cm on 500V, 20cm on 1000V, and 25cm on 1500V. We expect to reduce accidents caused by static electricity by allowing safety managers on fields where fire or explosion accidents can happen to monitor static electricity.

An Experimental Study on Cushion Characteristics of pneumatic Cylinder for Vertically-Mounted. (공압 수직실린더의 쿠션특성에 관한 실험적 연구)

  • Kim, Dong-Su;Kim, Hyeong-Ui;Lee, Sang-Cheon
    • 연구논문집
    • /
    • s.28
    • /
    • pp.73-87
    • /
    • 1998
  • A pneumatic control system of compressed air as a working fluid has a variety of advantages such as low price, high respondence, non-explosion and good control performance and thus has many applications in the field of automobile, electronic and semiconductor industry. However, it has a difficulty in contolling a precise position due to quick response of system and compressibility of working fluid and. in particular, shock stress may occur due to an external load, resulting in fracture of a cylinder cap unless cushion device is equipped in the linear actuator. To avoid this, a cushion device should be installed for damping effect of the external load and the supply pressure as well as for decreasing shock stress and vibration caused by high speed rotation. Previous studies include dimensionless analyses and computer simulations of cushion capability and experiments of horizontally-mounted cylinder performances. A new attempt is experimentally made in this study using a vertically-mounted cylinder under an operation condition of 4, 5 and 6 (bar) as supply pressure and 40, 70 and 100 (kgf) as external load. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion characteristics was also revealed in the meter-in circuit.

  • PDF

Development and Evaluation of a PMV Sensor for the Control of Indoor Thermal Environment (실내 온열환경 제어를 위한 PMV 센서의 개발 및 적용성 평가연구)

  • 윤동원;강효석;안병욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.870-878
    • /
    • 2003
  • The maintenance of thermal equilibrium between the human body and its environment is one of the primary requirements for health, wellbeing and comfort. For the effective control of indoor thermal environment, thermostat or humidistat is used. But, it is not sufficient to control the indoor thermal environment using only one or two parameters as human response for the indoor comfortable environment. So an environmental thermal index is required for the control of indoor thermal environment effectively. In this study, a PMV sensor has been developed which has integrated from various kinds of individual sensors for temperature, humidity, air velocity, radiant temperature. After applying the PMV and PPD equation, it is possible to monitor the indoor thermal environment with the sensor system, which is adopted to the circuit for optimization according to the human response with the metabolic rate and activities. The measurement was carried out to verify the performance of the integrated sensor system in comparison with existing measurement system, the PMV meter. As a result, the possibility of applying the PMV sensor to control the indoor thermal environment simultaneously was examined.