• Title/Summary/Keyword: Meteorological observations

Search Result 419, Processing Time 0.028 seconds

Standardization of Metadata for Urban Meteorological Observations (도시기상 관측을 위한 메타데이터의 표준화)

  • Song, Yunyoung;Chae, Jung-Hoon;Choi, Min-Hyeok;Park, Moon-Soo;Choi, Young Jean
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.600-618
    • /
    • 2014
  • The metadata for urban meteorological observation is standardized through comparison with those established at the World Meteorological Organization and the Korea Meteorological Administration to understand the surrounding environment around the sites exactly and maintain the networks and sites efficiently. It categorizes into metadata for an observational network and observational sites. The latter is again divided into the metadata for station general information, local scale information, micro scale information, and visual information in order to explain urban environment in detail. The metadata also contains the static information such as urban structure, surface cover, metabolism, communication, building density, roof type, moisture/heat sources, and traffic as well as the update information on the environment change, maintenance, replacement, and/or calibration of sensors. The standardized metadata for urban meteorological observation is applied to the Weather Information Service Engine (WISE) integrated meteorological sensor network and sites installed at Incheon area. It will be very useful for site manager as well as researchers in fields of urban meteorology, radiation, surface energy balance, anthropogenic heat, turbulence, heat storage, and boundary layer processes.

Spatiotemporal Changes of the Thermal Environment by the Restoration of an Inner-city Stream (도시 내부 하천 복원에 의한 열 환경의 시공간적 변화)

  • Kwon, Tae Heon;Kim, Kyu Rang;Byon, Jae-Young;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.321-330
    • /
    • 2009
  • Spatiotemporal changes in the thermal environment in a large city, Seoul, Korea were analyzed using a thermal index, perceived temperature (PT), to standardize the weather conditions. PT is a standard index for the thermal balance of human beings in thermophysiological environment. For the analysis of PT, the data from long-term monitoring and intensive observations in and around the inner-city stream called 'Cheonggye' in Seoul, were compared with a reference data from the Seoul weather station. Long-term data were monitored by installing two automatic weather stations at 66m (S1) and 173m (S2) away from the center of the stream. Through the analysis of the data during the summer of 2006 and intensive observation periods, it was revealed that the stream's effects on the PT extended up to the distance of the S1 site. In winter, the increase of the PT between pre- and post-restoration was stronger at S1, which was nearer than S2 from the stream. These results suggest that PT can be used as an effective model in analyzing the changes of the thermal environment in relation with the changes of water surface areas.

Benefits of the Next Generation Geostationary Meteorological Satellite Observation and Policy Plans for Expanding Satellite Data Application: Lessons from GOES-16 (차세대 정지궤도 기상위성관측의 편익과 활용 확대 방안: GOES-16에서 얻은 교훈)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.201-209
    • /
    • 2018
  • Benefits of the next generation geostationary meteorological satellite observation (e.g., GEO-KOMPSAT-2A) are qualitatively and comprehensively described and discussed. Main beneficial phenomena for application can be listed as tropical cyclones (typhoon), high impact weather (heavy rainfall, lightning, and hail), ocean, air pollution (particulate matter), forest fire, fog, aircraft icing, volcanic eruption, and space weather. The next generation satellites with highly enhanced spatial and temporal resolution images, expanding channels, and basic and additional products are expected to create the new valuable benefits, including the contribution to the reduction of socioeconomic losses due to weather-related disasters. In particular, the new satellite observations are readily applicable to early warning and very-short time forecast application of hazardous weather phenomena, global climate change monitoring and adaptation, improvement of numerical weather forecast skill, and technical improvement of space weather monitoring and forecast. Several policy plans for expanding the application of the next generation satellite data are suggested.

Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS (유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증)

  • Kim, C.H.;Na, J.G.;Park, C.J.;Park, J.H.;Im, C.S.;Yoon, E.;Kim, M.S.;Park, C.H.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.

Adjoint-Based Observation Impact of Advanced Microwave Sounding Unit-A (AMSU-A) on the Short-Range Forecast in East Asia (수반 모델에 기반한 관측영향 진단법을 이용하여 동아시아 지역의 단기예보에 AMSU-A 자료 동화가 미치는 영향 분석)

  • Kim, Sung-Min;Kim, Hyun Mee
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.93-104
    • /
    • 2017
  • The effect of Advanced Microwave Sounding Unit-A (AMSU-A) observations on the short-range forecast in East Asia (EA) was investigated for the Northern Hemispheric (NH) summer and winter months, using the Forecast Sensitivity to Observations (FSO) method. For both periods, the contribution of radiosonde (TEMP) to the EA forecast was largest, followed by AIRCRAFT, AMSU-A, Infrared Atmospheric Sounding Interferometer (IASI), and the atmospheric motion vector of Communication, Ocean and Meteorological Satellite (COMS) or Multi-functional Transport Satellite (MTSAT). The contribution of AMSU-A sensor was largely originated from the NOAA 19, NOAA 18, and MetOp-A (NOAA 19 and 18) satellites in the NH summer (winter). The contribution of AMSU-A sensor on the MetOp-A (NOAA 18 and 19) satellites was large at 00 and 12 UTC (06 and 18 UTC) analysis times, which was associated with the scanning track of four satellites. The MetOp-A provided the radiance data over the Korea Peninsula in the morning (08:00~11:30 LST), which was important to the morning forecast. In the NH summer, the channel 5 observations on MetOp-A, NOAA 18, 19 along the seaside (along the ridge of the subtropical high) increased (decreased) the forecast error slightly (largely). In the NH winter, the channel 8 observations on NOAA 18 (NOAA 15 and MetOp-A) over the Eastern China (Tibetan Plateau) decreased (increased) the forecast error. The FSO provides useful information on the effect of each AMSU-A sensor on the EA forecasts, which leads guidance to better use of AMSU-A observations for EA regional numerical weather prediction.

Derivation of New Box Model to Analyze the Air Pollution Trends in a Metropolitan Area (대도시 대기오염 추세 분석을 위한 새로운 박스모델의 유도)

  • Kim Seogcheol;Joh Seunghun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.377-397
    • /
    • 2005
  • A new box model is proposed to describe the dynamic trend of the spatially averaged concentrations of pollutants over a large urban area such as metropolitan Seoul. Being averaged temporally and spatially over a thresh-hold scales, the dynamics of the pollutant concentration becomes simple enough that the governing equation can be expressed in an explicit algebraic form as a function of several meteorological factors and the pollutant emission rate. The single most important meteorological factor is the wind speed dominating the daily variations of the pollutant concentrations. Given the meteorological data from the surface station in the metropolitan Seoul, the model concentration shows excellent agreement with observations from January 1, 1990 to December 31, 2000: the modeling uncertainty, for example, of $NO_2$ concentrations, defined as mean differences between the model concentrations and observations is $16\%$ of the model concentrations. Even for $PM_{10}$ of which secondary sources are considered to be very important and simple box model is irrelevant to, the model performance turns out good, modeling uncertainty being about $32\%$.

USING REMOTELY SENSED DATA TO ESTIMATE THE SURFACE HEAT FLUXES OVER TAIWAN'S CHAIYI PLAIN

  • Chang, Tzu-Yin;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.422-425
    • /
    • 2007
  • Traditionally, surface energy fluxes are obtained by model simulations or empirical equations with auxiliary meteorological data. These methods may not effectively represent the surface heat fluxes in a regional scale due to scene variability. On the other hand, remote sensing has the advantage to acquire data of a large area in an instantaneous view. The remotely sensed data can be further used to retrieve surface radiation and heat fluxes over a large area. In this study, the airborne and satellite images in conjunction with meteorological data and ground observations were used to estimate the surface heat fluxes over Taiwan's Chaiyi Plain. The results indicate that surface heat fluxes can be properly determined from both airborne and satellite images. The correlation coefficient of surface heat fluxes with in situ corresponding observations is over 0.60. We also observe that the remotely sensed data can efficiently provide a long term monitoring of surface heat fluxes over Taiwan's Chaiyi Plain.

  • PDF

Case Study of the Heavy Asian Dust Observed in Late February 2015 (2015년 2월 관측된 고농도 황사 사례 연구)

  • Park, Mi Eun;Cho, Jeong Hoon;Kim, Sunyoung;Lee, Sang-Sam;Kim, Jeong Eun;Lee, Hee Choon;Cha, Joo Wan;Ryoo, Sang Boom
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.257-275
    • /
    • 2016
  • Asian dust is a seasonal meteorological phenomenon influencing most East Asia, irregularly occurring during spring. Unusual heavy Asian dust event in winter was observed in Seoul, Korea, with up to $1,044{\mu}g\;m^{-3}$ of hourly mean $PM_{10}$, in 22~23 February 2015. Causes of such infrequent event has been studied using both ground based and spaceborne observations, as well as numerical simulations including ECMWF ERA Interim reanalysis, NOAA HYSPLIT backward trajectory analysis, and ADAM2-Haze simulation. Analysis showed that southern Mongolia and northern China, one of the areas for dust origins, had been warm and dry condition, i.e. no snow depth, soil temperature of ${\sim}0^{\circ}C$, and cumulative rainfall of 1 mm in February, along with strong surface winds higher than critical wind speed of $6{\sim}7.5m\;s^{-1}$ during 20~21 February. While Jurihe, China, ($42^{\circ}23^{\prime}56^{{\prime}{\prime}}N$, $112^{\circ}53^{\prime}58^{{\prime}{\prime}}E$) experienced $9,308{\mu}g\;m^{-3}$ of hourly mean surface $PM_{10}$ during the period, the Asian dust had affected the Korean Peninsula within 24 hours traveling through strong north-westerly wind at ~2 km altitude. KMA issued Asian dust alert from 1100 KST on 22nd to 2200 KST on 23rd since above $400{\mu}g\;m^{-3}$ of hourly mean surface $PM_{10}$. It is also important to note that, previously to arrival of the Asian dust, the Korean Peninsula was affected by anthropogenic air pollutants ($NO_3^-$, $SO_4^{2-}$, and $NH_4^+$) originated from the megacities and large industrial areas in northeast China. In addition, this study suggests using various data sets from modeling and observations as well as improving predictability of the ADAM2-Haze model itself, in order to more accurately predict the occurrence and impacts of the Asian dust over the Korean peninsula.

Airborne In-situ Measurement of CO2 and CH4 in Korea: Case Study of Vertical Distribution Measured at Anmyeon-do in Winter (항공기를 이용한 온실가스 CO2와 CH4의 연속관측: 안면도 겨울철 연직분포사례 분석)

  • Li, Shanlan;Goo, Tae-Young;Moon, Hyejin;Labzovskii, Lev;Kenea, Samuel Takele;Oh, Young-Suk;Lee, Haeyoung;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.511-523
    • /
    • 2019
  • A new Korean Meteorological Administration (KMA) airborne measurement platform has been established for regular observations for scientific purpose over South Korea since late 2017. CRDS G-2401m analyzer mounted on the King Air 350HW was used to continuous measurement of CO2, CH4 and CO mole fraction. The total uncertainty of measurements was estimated to be 0.07 ppm for CO2, 0.5 ppb for CH4, and 4.2 ppb for CO by combination of instrument precision, repeatability test simulated in-flight condition and water vapor correction uncertainty. The airborne vertical profile measurements were performed at a regional Global Atmosphere Watch (GAW) Anmyeon-do (AMY) station that belongs to the Total Carbon Column Observing Network (TCCON) and provides concurrent observations to the Greenhouse Gases Observing Satellite (GOSAT) overpasses. The vertical profile of CO2 shows clear altitude gradient, while the CH4 shows non-homogenous pattern in the free troposphere over Anmyeon-do. Vertically averaged CO2 at the altitude between 1.5 and 8.0km are lower than AMY surface background value about 7 ppm but higher than that observed in free troposphere of western pacific region about 4 ppm, respectively. CH4 shows lower level than those from ground GAW stations, comparable with flask airborne data that was taken in the western pacific region. Furthermore, this study shows that the combination of CH4 distribution in free troposphere and trajectory analysis, taking account of convective mixing, is a useful tool in investigating CH4 transport processes from tropical region to Korean region in winter season.

The Changes of Meteorological Environment by Urban Development (대규모 도시 재개발에 따른 기상환경변화)

  • Kim, Geun-Hoi;Kim, Yeon-Hee;Koo, Hae-Jung;Kim, Kyu-Rang;Jung, Hyun-Sook
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • Urbanization affects the local thermal environment due to the large scale land use changes. To investigate the weather environment change of large scale urban redevelopment, 9 surface temperature and humidity observations were accomplished at Eunpyeong new town area. The observation period is from March 2007 to February 2010. In the center of development area, the air temperature has increased and relative humidity has decreased, by the changes of the land cover and building construction. In the area where the green zone is maintained, air temperature and relative humidity were not changed significantly. The air temperature and relative humidity for the other development observation stations is decreased and increased, respectively. The relative temperature difference between study area and a neighboring rural location was increased during observation periods. The difference is the highest during winter. The urban-rural minimum temperature difference was increased at development area, which means that urbanization affects increasing of minimum temperature in study area.