• Title/Summary/Keyword: Meteorological models

Search Result 532, Processing Time 0.025 seconds

Improvement of WRF forecast meteorological data by Model Output Statistics using linear, polynomial and scaling regression methods

  • Jabbari, Aida;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.147-147
    • /
    • 2019
  • The Numerical Weather Prediction (NWP) models determine the future state of the weather by forcing current weather conditions into the atmospheric models. The NWP models approximate mathematically the physical dynamics by nonlinear differential equations; however these approximations include uncertainties. The errors of the NWP estimations can be related to the initial and boundary conditions and model parameterization. Development in the meteorological forecast models did not solve the issues related to the inevitable biases. In spite of the efforts to incorporate all sources of uncertainty into the forecast, and regardless of the methodologies applied to generate the forecast ensembles, they are still subject to errors and systematic biases. The statistical post-processing increases the accuracy of the forecast data by decreasing the errors. Error prediction of the NWP models which is updating the NWP model outputs or model output statistics is one of the ways to improve the model forecast. The regression methods (including linear, polynomial and scaling regression) are applied to the present study to improve the real time forecast skill. Such post-processing consists of two main steps. Firstly, regression is built between forecast and measurement, available during a certain training period, and secondly, the regression is applied to new forecasts. In this study, the WRF real-time forecast data, in comparison with the observed data, had systematic biases; the errors related to the NWP model forecasts were reflected in the underestimation of the meteorological data forecast by the WRF model. The promising results will indicate that the post-processing techniques applied in this study improved the meteorological forecast data provided by WRF model. A comparison between various bias correction methods will show the strength and weakness of the each methods.

  • PDF

Improvement of Vegetation Cooling Effects in BioCAS for Better Estimation of Daily Maximum Temperature during Heat Waves - In Case of the Seoul Metropolitan Area - (식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 -)

  • Lee, Hankyung;Yi, Chaeyeon;Kim, Kyu Rang;Cho, Changbum
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.131-147
    • /
    • 2019
  • On the urban scale, Micro-climate analysis models for urban scale have been developed to investigate the atmospheric characteristics in urban surface in detail and to predict the micro-climate change due to the changes in urban structure. BioCAS (Biometeorological Climate Impact Assessment System) is a system that combines such analysis models and has been implemented internally in the Korea Meteorological Administration. One of role in this system is the analysis of the health impact by heat waves in urban area. In this study, the vegetation cooling models A and B were developed and linked with BioCAS and evaluated by the temperature drop at the vegetation areas during ten selected heat-wave days. Smaller prediction errors were found as a result of applying the vegetation cooling models to the heat-wave days. In addition, it was found that the effects of the vegetation cooling models produced different results according to the distribution of vegetation area in land cover near each observation site - the improvement of the model performance on temperature analysis was different according to land use at each location. The model A was better fitted where the surrounding vegetation ratio was 50% or more, whereas the model B was better where the vegetation ratio was less than 50% (higher building and impervious areas). Through this study, it should be possible to select an appropriate vegetation cooling model according to its fraction coverage so that the temperature analysis around built-up areas would be improved.

Predictability for Heavy Rainfall over the Korean Peninsula during the Summer using TIGGE Model (TIGGE 모델을 이용한 한반도 여름철 집중호우 예측 활용에 관한 연구)

  • Hwang, Yoon-Jeong;Kim, Yeon-Hee;Chung, Kwan-Young;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.287-298
    • /
    • 2012
  • The predictability of heavy precipitation over the Korean Peninsula is studied using THORPEX Interactive Grand Global Ensemble (TIGGE) data. The performance of the six ensemble models is compared through the inconsistency (or jumpiness) and Root Mean Square Error (RMSE) for MSLP, T850 and H500. Grand Ensemble (GE) of the three best ensemble models (ECMWF, UKMO and CMA) with equal weight and without bias correction is consisted. The jumpiness calculated in this study indicates that the GE is more consistent than each single ensemble model. Brier Score (BS) of precipitation also shows that the GE outperforms. The GE is used for a case study of a heavy rainfall event in Korean Peninsula on 9 July 2009. The probability forecast of precipitation using 90 members of the GE and the percentage of 90 members exceeding 90 percentile in climatological Probability Density Function (PDF) of observed precipitation are calculated. As the GE is excellent in possibility of potential detection of heavy rainfall, GE is more skillful than the single ensemble model and can lead to a heavy rainfall warning in medium-range. If the performance of each single ensemble model is also improved, GE can provide better performance.

Intercomparison of Wind and Air Temperature Fields of Meteorological Model for Forecasting Air Quality in Seoul Metropolitan Area (수도권지역 대기질 예측을 위한 기상장 모델의 바람장과 온도장 비교 연구)

  • Jeong, Ju-Hee;Kim, Yoo-Keun;Moon, Yun-Seob;Hwang, Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.640-652
    • /
    • 2007
  • The MM5, RAMS and WRF, meteorological models have provided the dynamical parameters as inputs to air quality model. A major content of this study is that significant characteristics of three models for high-ozone occurrence analyze for surface wind and air temperature fields and compare with observation data in Seoul metropolitan area. An analysis of air temperature field revealed that location of core in high temperature of MM5 and WRF differed from that of RAMS. MM5 and WRF indicated high temperature in Seoul but RAMS represented it on the outskirts of Seoul. MM5 and WRF were underestimated maximum temperature during daytime but RAMS simulated similar value with observation data. Surface wind field with three models, it was shown many differences at horizontal distribution of wind direction. RAMS indicated weak wind speed in land and strong sea breeze at coastal areas than MM5 and WRF. However wind speed simulated by three model were overestimated during both daytime and nighttime.

Correction of One-layer Solar Radiation Model by Multi-layer Line-by-line Solar Radiation Model (다층 상세 태양복사 모델에 의한 단층 태양복사 모델의 보정)

  • Jee, Joon-Bum;Lee, Won-Hak;Zo, Il-Sung;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.151-162
    • /
    • 2011
  • One-layer solar radiation(GWNU; Gangneung-Wonju National University) model is developed in order to resolve the lack of vertical observations and fast calculation with high resolution. GWNU model is based on IQBAL(Iqbal, 1983) and NREL(National Renewable Energy Laboratory) methods and corrected by precise multi-layer LBL(Line-by-line) model. Input data were used 42 atmospheric profiles from Garand et al.(2001) for calculation of global radiation by the Multi-layer and one-layer solar radiation models. GWNU model has error of about -0.10% compared with LBL model while IQBAL and NREL models have errors of about -3.92 and -2.57%, respectively. Global solar radiation was calculated by corrected GWNU solar model with satellites(MODIS, OMI and MTSAT-1R), RDPS model prediction data in Korea peninsula in 2009, and the results were compared to surface solar radiation observed by 22 KMA solar sites. All models have correlation($R^2$) of 0.91 with the observed hourly solar radiation, and root mean square errors of IQBAL, NREL and GWNU models are 69.16, 69.74 and $67.53W/m^2$, respectively.

Analysis of Time Series Models for Ozone Concentrations at the Uijeongbu City in Korea

  • Lee, Hoon-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1153-1164
    • /
    • 2008
  • The ozone data is one of the important environmental data for measurement of the atmospheric condition of the country. In this article, the Autoregressive Error (ARE) model have been considered for analyzing the ozone data at the northern part of the Gyeonggi-Do, Uijeongbu monitoring site in Korea. The result showed that both overall and monthly ARE models are suited for describing the ozone concentration. In the ARE model, seven meteorological variables and four pollution variables are used as the as the explanatory variables for the ozone data set. The seven meteorological variables are daily maximum temperature, wind speed, relative humidity, rainfall, dew point temperature, steam pressure, and amount of cloud. The four air pollution explanatory variables are Sulfur dioxide(SO2), Nitrogen dioxide(NO2), Cobalt(CO), and Promethium 10(PM10). Also, the high level ozone data (over 80ppb) have been analyzed four ARE models, General ARE, HL ARE, PM10 add ARE, Temperature add ARE model. The result shows that the General ARE, HL ARE, and PM10 add ARE models are suited for describing the high level of ozone data.

  • PDF

Use of big data for estimation of impacts of meteorological variables on environmental radiation dose on Ulleung Island, Republic of Korea

  • Joo, Han Young;Kim, Jae Wook;Jeong, So Yun;Kim, Young Seo;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4189-4200
    • /
    • 2021
  • In this study, the relationship between the environmental radiation dose rate and meteorological variables was investigated with multiple regression analysis and big data of those variables. The environmental radiation dose rate and 36 different meteorological variables were measured on Ulleung Island, Republic of Korea, from 2011 to 2015. Not all meteorological variables were used in the regression analysis because the different meteorological variables significantly affect the environmental radiation dose rate during different periods, and the degree of influence changes with time. By applying the Pearson correlation analysis and stepwise selection methods to the big dataset, the major meteorological variables influencing the environmental radiation dose rate were identified, which were then used as the independent variables for the regression model. Subsequently, multiple regression models for the monthly datasets and dataset of the entire period were developed.

Comparing Meteorological Fields and Their Impacts on Carbon Bond Mechanism-IV Modeling

  • Lee, Hwa-Woon;Lee, Soon-Hwan;Kim, Heon-Sook
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.449-450
    • /
    • 2003
  • Performance of photochemical models and their response to emission controls are heavily dependent on the inputs to the model. Two key inputs to these models are accurate meteorological and emissions data. But they can contain significant errors which contribute to uncertainties in photochemical simulation (Kumar and Russell, 1996; Sistla et al., 1996; Pielke and Uliase, 1998; Barna and Lamb, 2000; Nelson L. Seaman, 2000: Hogrefe et al., 2001; Biswas et al., 2001).(omitted)

  • PDF

Emergence of Anthropogenic Warming over South Korea in CMIP5 Projections (CMIP5 자료를 활용한 미래 우리나라의 인위적 영향에 의한 온난화 발현 시기 분석)

  • Boo, Kyung-On;Shim, Sungbo;Kim, Jee-Eun;Byun, Young-Hwa;Cho, Chun Ho
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • Significant warming by anthropogenic influences over Korea is analyzed using CMIP5 projections (monthly mean, maximum and minimum temperatures) from RCP 8.5, 4.5, and 2.6 scenarios. Time of emergence (TOE) in JJA and DJF is chosen as the year when the magnitude of warming against the natural climate variability satisfies S/N>2 in 80% of the models in this study. Significant emergence in JJA is expected to appear in 2030s in three RCP scenarios, earlier than TOE in DJF. In DJF, TOE is expected to be 2040s in RCP 8.5 and is delayed in 2060s, 2080s in RCP 4.5, 2.6, respectively. Later emergence in low emission scenarios implies an importance of climate change mitigation consistent with previous studies. Maximum and minimum temperatures show similar results to the case of mean temperature. ToE is found to be affected by the amplitude of natural variability by season, variables and model spread, which requires further understanding.

Development of the Selected Multi-model Consensus Technique for the Tropical Cyclone Track Forecast in the Western North Pacific (태풍 진로예측을 위한 다중모델 선택 컨센서스 기법 개발)

  • Jun, Sanghee;Lee, Woojeong;Kang, KiRyong;Yun, Won-Tae
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.375-387
    • /
    • 2015
  • A Selected Multi-model CONsensus (SMCON) technique was developed and verified for the tropical cyclone track forecast in the western North Pacific. The SMCON forecasts were produced by averaging numerical model forecasts showing low 70% latest 6 h prediction errors among 21 models. In the homogeneous comparison for 54 tropical cyclones in 2013 and 2014, the SMCON improvement rate was higher than the other forecasts such as the Non-Selected Multi-model CONsensus (NSMCON) and other numerical models (i.e., GDAPS, GEPS, GFS, HWRF, ECMWF, ECMWF_H, ECMWF_EPS, JGSM, TEPS). However, the SMCON showed lower or similar improvement rate than a few forecasts including ECMWF_EPS forecasts at 96 h in 2013 and at 72 h in 2014 and the TEPS forecast at 120 h in 2013. Mean track errors of the SMCON for two year were smaller than the NSMCON and these differences were 0.4, 1.2, 5.9, 12.9, 8.2 km at 24-, 48-, 72-, 96-, 120-h respectively. The SMCON error distributions showed smaller central tendency than the NSMCON's except 72-, 96-h forecasts in 2013. Similarly, the density for smaller track errors of the SMCON was higher than the NSMCON's except at 72-, 96-h forecast in 2013 in the kernel density estimation analysis. In addition, the NSMCON has lager range of errors above the third quantile and larger standard deviation than the SMCON's at 72-, 96-h forecasts in 2013. Also, the SMCON showed smaller bias than ECMWF_H for the cross track bias. Thus, we concluded that the SMCON could provide more reliable information on the tropical cyclone track forecast by reflecting the real-time performance of the numerical models.