• 제목/요약/키워드: Meteorological drought

검색결과 234건 처리시간 0.027초

Future drought risk assessment under CMIP6 GCMs scenarios

  • Thi, Huong-Nguyen;Kim, Jin-Guk;Fabian, Pamela Sofia;Kang, Dong-Won;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.305-305
    • /
    • 2022
  • A better approach for assessing meteorological drought occurrences is increasingly important in mitigating and adapting to the impacts of climate change, as well as strategies for developing early warning systems. The present study defines meteorological droughts as a period with an abnormal precipitation deficit based on monthly precipitation data of 18 gauging stations for the Han River watershed in the past (1974-2015). This study utilizes a Bayesian parameter estimation approach to analyze the effects of climate change on future drought (2025-2065) in the Han River Basin using the Coupled Model Intercomparison Project Phase 6 (CMIP6) with four bias-corrected general circulation models (GCMs) under the Shared Socioeconomic Pathway (SSP)2-4.5 scenario. Given that drought is defined by several dependent variables, the evaluation of this phenomenon should be based on multivariate analysis. Two main characteristics of drought (severity and duration) were extracted from precipitation anomalies in the past and near-future periods using the copula function. Three parameters of the Archimedean family copulas, Frank, Clayton, and Gumbel copula, were selected to fit with drought severity and duration. The results reveal that the lower parts and middle of the Han River basin have faced severe drought conditions in the near future. Also, the bivariate analysis using copula showed that, according to both indicators, the study area would experience droughts with greater severity and duration in the future as compared with the historical period.

  • PDF

Influences of Heat Waves on Daily Mortality in South Korea (한반도에서 여름철 폭염이 일 사망률에 미치는 영향)

  • Kim, Jiyoung;Lee, Dae-Geun;Park, Il-Soo;Choi, Byoung-Cheol;Kim, Jeong-Sik
    • Atmosphere
    • /
    • 제16권4호
    • /
    • pp.269-278
    • /
    • 2006
  • Extremely hot weathers may cause major weather-related deaths in the summertime. Influences of heat waves on daily mortalities in 6 major cities of South Korea were investigated. Daily deaths at Seoul were exponentially increased with the daily maximum temperature. However, there were regional differences of the temperature dependence on the mortality because of an acclimation effect of inhabitants. The threshold temperature (with respect to daily maximum temperature) at Seoul was found to be about $31^{\circ}C$ provided that it is determined by a two-phase regression model. The meteorological causes of recordable hot summer in late July of 1994 and their impacts on human health were also investigated. Strong surface heating caused by strong insolation under conditions with clear sky and dry surface due to prolonged drought was likely to be closely associated with the extreme hot weather in 1994 in South Korea.

Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea (표준강수증발산지수를 활용한 미래 가뭄특성의 시계열 변화전망)

  • Nam, Won-Ho;Hayes, Michael J.;Wilhite, Donald A.;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제57권1호
    • /
    • pp.37-45
    • /
    • 2015
  • Recent droughts in South Korea have had large economic and environmental impacts across the country. Changes in rainfall and hydrologic patterns due to climate change can potentially increase the occurrence of extreme droughts and affect the future availability of water resources. Therefore, it is necessary to evaluate drought vulnerability for water resources planning and management, and identify the appropriate mitigation actions to conduct a drought risk analysis in the context of climate change. The objective of this study is changes in the temporal trends of drought characteristics in South Korea to examine drought impacts under climate change. First, the changes of drought occurrence were analyzed by applying the Standardized Precipitation Evapotranspiration Index (SPEI) for meteorological data on 54 meteorological stations, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions. These results show the high influence of climate change on drought phenomenon, and will contribute to water resources management and drought countermeasures to climate change.

Analysis of Changes of Spatio-Temporal Drought Characteristics Using Three-Dimensional Drought Maps (3차원 가뭄지도를 활용한 시공간적 가뭄 특성 변화 분석)

  • Yoo, Jiyoung;Kim, Jang-Gyeong;Kwon, Hyun-Han;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제40권2호
    • /
    • pp.209-215
    • /
    • 2020
  • In order to understand the characteristics of natural droughts, it is very important to interpret the spatio-temporal relationship between different types of droughts. In this study, meteorological and hydrological drought events were defined to account for the overlap between drought duration and spatial extent in three dimensions (i.e., latitude, longitude, and timing). In other words, the spatio-temporal drought propagation characteristics were analyzed based on the drought characteristic factors (duration, area, depth, center). The drought map considering the characteristics of spatio-temporal drought propagation can be used to find the fundamental cause of the hydrological drought which is expected to frequently occur in the future. In addition, the drought map is expected to be useful in preparing an effective drought response plan.

Standar Dization and Evaluation of PDSI Calculation Method for Korean Drought Management Agencies (국내 가뭄관리 기관별 PDSI 산정방법의 표준화 및 평가)

  • Bae, Deg-Hyo;Sohn, Kyung-Hwan;Kim, Hyun-Kyung;Lee, Joo-Heon;Lee, Dong-Ryul;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Atmosphere
    • /
    • 제23권4호
    • /
    • pp.539-547
    • /
    • 2013
  • The objective of this study is to standardize the calculation method of Palmer Drought Severity Index (PDSI) for the three Drought Management Agencies (DMA) in south Korea, and to evaluate the PDSI applicability. For comparison and review of the method, the code and input data of PDSI are collected from each DMA. The calculation method is the same, but the used input data (number of meteorological stations, normal year period, Available Water Capacity (AWC) of the soil) are different. Through discussions with drought experts and literature review, the standardized method is determined. 61 stations which have the data period more than 30 years are selected. Also the normal year is fixed for 30 years and updated every 10 years. The observed AWC is utilized using GIS data. Empirical equation of PDSI is re-estimated according to domestic climate characteristics. For evaluating the standardized PDSI, past drought events are investigated and drought indices including the existing SPI and PDSI are used for comparative analysis. As results, although the accuracy of standardized PDSI through ROC analysis is lower than SPI, the newly standardized PDSI is better than existing PDSI from DMA, Also it reasonably explain the spatial drought situation through the spatial analysis.

Assessment of Upland Drought Using Soil Moisture Based on the Water Balance Analysis (물수지 기반 지역별 토양수분을 활용한 밭가뭄 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Yang, Mi-Hye;Mun, Young-Sik;Hong, Eun-Mi;Ok, Jung-Hun;Hwang, Seonah;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제63권5호
    • /
    • pp.1-11
    • /
    • 2021
  • Soil moisture plays a critical role in hydrological processes, land-atmosphere interactions and climate variability. It can limit vegetation growth as well as infiltration of rainfall and therefore very important for agriculture sector and food protection. Recently, due to the increased damage from drought caused by climate change, there is a frequent occurrence of shortage of agricultural water, making it difficult to supply and manage stable agricultural water. Efficient water management is necessary to reduce drought damage, and soil moisture management is important in case of upland crops. In this study, soil moisture was calculated based on the water balance model, and the suitability of soil moisture data was verified through the application. The regional soil moisture was calculated based on the meteorological data collected by the meteorological station, and applied the Runs theory. We analyzed the spatiotemporal variability of soil moisture and drought impacts, and analyzed the correlation between actual drought impacts and drought damage through correlation analysis of Standardized Precipitation Index (SPI). The soil moisture steadily decreased and increased until the rainy season, while the drought size steadily increased and decreased until the rainy season. The regional magnitude of the drought was large in Gyeonggi-do and Gyeongsang-do, and in winter, severe drought occurred in areas of Gangwon-do. As a result of comparative analysis with actual drought events, it was confirmed that there is a high correlation with SPI by each time scale drought events with a correlation coefficient.

Comparison and Analysis of Drought Index based on MODIS Satellite Images and ASOS Data for Gyeonggi-Do (경기도 지역에 대한 MODIS 위성영상 및 지점자료기반 가뭄지수의 비교·분석)

  • Yu-Jin, KANG;Hung-Soo, KIM;Dong-Hyun, KIM;Won-Joon, WANG;Han-Eul, LEE;Min-Ho, SEO;Yun-Jae, CHOUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제25권4호
    • /
    • pp.1-18
    • /
    • 2022
  • Currently, the Korea Meteorological Administration evaluates the meteorological drought by region using SPI6(standardized precipitation index 6), which is a 6-month cumulative precipitation standard. However, SPI is an index calculated only in consideration of precipitation at 69 weather stations, and the drought phenomenon that appears for complex reasons cannot be accurately determined. Therefore, the purpose of this study is to calculate and compare SPI considering only precipitation and SDCI (Scaled Drought Condition Index) considering precipitation, vegetation index, and temperature in Gyeonggi. In addition, the advantages and disadvantages of the station data-based drought index and the satellite image-based drought index were identified by using results calculated through the comparison of SPI and SDCI. MODIS(MODerate resolution Imaging Spectroradiometer) satellite image data, ASOS(Automated Synoptic Observing System) data, and kriging were used to calculate SDCI. For the duration of precipitation, SDCI1, SDCI3, and SDCI6 were calculated by applying 1-month, 3-month, and 6-month respectively to the 8 points in 2014. As a result of calculating the SDCI, unlike the SPI, drought patterns began to appear about 2-month ago, and drought by city and county in Gyeonggi was well revealed. Through this, it was found that the combination of satellite image data and station data increased efficiency in the pattern of drought index change, and increased the possibility of drought prediction in wet areas along with existing dry areas.

Application of Evaporative Stress Index (ESI) for Satellite-based Agricultural Drought Monitoring in South Korea (위성영상기반 농업가뭄 모니터링을 위한 Evaporative Stress Index (ESI)의 적용성 평가)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Hong, Eun-Mi;Kim, Taegon;Kim, Dae-Eui;Shin, An-Kook;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제60권6호
    • /
    • pp.121-131
    • /
    • 2018
  • Climate change has caused changes in environmental factors that have a direct impact on agriculture such as temperature and precipitation. The meteorological disaster that has the greatest impact on agriculture is drought, and its forecasts are closely related to agricultural production and water supply. In the case of terrestrial data, the accuracy of the spatial map obtained by interpolating the each point data is lowered because it is based on the point observation. Therefore, acquisition of various meteorological data through satellite imagery can complement this terrestrial based drought monitoring. In this study, Evaporative Stress Index (ESI) was used as satellite data for drought determination. The ESI was developed by NASA and USDA, and is calculated through thermal observations of GOES satellites, MODIS, Landsat 5, 7 and 8. We will identify the difference between ESI and other satellite-based drought assessment indices (Vegetation Health Index, VHI, Leaf Area Index, LAI, Enhanced Vegetation Index, EVI), and use it to analyze the drought in South Korea, and examines the applicability of ESI as a new indicator of agricultural drought monitoring.

Construction & Evaluation of GloSea5-Based Hydrological Drought Outlook System (수문학적 가뭄전망을 위한 GloSea5의 활용체계 구축 및 예측성 평가)

  • Son, Kyung-Hwan;Bae, Deg-Hyo;Cheong, Hyun-Sook
    • Atmosphere
    • /
    • 제25권2호
    • /
    • pp.271-281
    • /
    • 2015
  • The objectives of this study are to develop a hydrological drought outlook system using GloSea5 (Global Seasonal forecasting system 5) which has recently been used by KMA (Korea Meteorological Association) and to evaluate the forecasting capability. For drought analysis, the bilinear interpolation method was applied to spatially downscale the low-resolution outputs of GloSea5 and PR (Predicted Runoff) was produced for different lead times (i.e., 1-, 2-, 3-month) running LSM (Land Surface Model). The behavior of PR anomaly was similar to that of HR (Historical Runoff) and the estimated values were negative up to lead times of 1- and 2-month. For the evaluation of drought outlook, SRI (Standardized Runoff Index) was selected and PR_SRI estimated using PR. ROC score was 0.83, 0.71, 0.60 for 1-, 2- and 3-month lead times, respectively. It also showed the hit rate is high and false alarm rate is low as shorter lead time. The temporal Correlation Coefficient (CC) was 0.82, 0.60, 0.31 and Root Mean Square Error (RMSE) was 0.52, 0.86, 1.20 for 1-, 2-, 3-month lead time, respectively. The accuracy of PR_SRI was high up to 1- and 2-month lead time on local regions except the Gyeonggi and Gangwon province. It can be concluded that GloSea5 has high applicability for hydrological drought outlook.

Short Term Drought Forecasting using Seasonal ARIMA Model Based on SPI and SDI - For Chungju Dam and Boryeong Dam Watersheds - (SPI 및 SDI 기반의 Seasonal ARIMA 모형을 활용한 가뭄예측 - 충주댐, 보령댐 유역을 대상으로 -)

  • Yoon, Yeongsun;Lee, Yonggwan;Lee, Jiwan;Kim, Seongjoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제61권1호
    • /
    • pp.61-74
    • /
    • 2019
  • In this study, the SPI (Standardized Precipitation Index) of meteorological drought and SDI (Streamflow Drought Index) of hydrological drought for 1, 3, 6, 9, and 12 months duration were estimated to analyse the characteristics of drought using rainfall and dam inflow data for Chungju dam ($6,661.8km^2$) with 31 years (1986-2016) and Boryeong dam ($163.6km^2$) watershed with 19 years (1998-2016) respectively. Using the estimated SPI and SDI, the drought forecasting was conducted using seasonal autoregressive integrated moving average (SARIMA) model for the 5 durations. For 2016 drought, the SARIMA had a good results for 3 and 6 months. For the 3 months SARIMA forecasting of SPI and SDI, the correlation coefficient of SPI3, SPI6, SPI12, SDI1, and SDI6 at Chungju Dam showed 0.960, 0.990, 0.999, 0.868, and 0.846, respectively. Also, for same duration forecasting of SPI and SDI at Boryeong Dam, the correlation coefficient of SPI3, SPI6, SDI3, SDI6, and SDI12 showed 0.999, 0.994, 0.999, 0.880, and 0.992, respectively. The SARIMA model showed the possibility to provide the future short-term SPI meteorological drought and the resulting SDI hydrological drought.