• Title/Summary/Keyword: Meteorological Satellite

Search Result 796, Processing Time 0.026 seconds

JPEG Compression Pereformance Analysis of MTSAT-1R HRIT_LRIT

  • Kim, Tae-Young;Kim, Tae-Hoon;Ahn, Sang-Il;SaKong, Young-Bo
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.463-468
    • /
    • 2006
  • This paper analyzed the JPEG compression performance of MTSAT-lR (Multi-functional Transport Satellite-1 Replacement), which is offering the LRIT/HRIT (Low Rate Information Transmissio/High Rate Information Transmission) service now, in order to design the system regarding LRIT/HRIT of COMS (Communication, Ocean and Meteorological Satellite). To do so, we analysed Lossy and Lossless JPEG compression performance regarding the MTSAT-1R LRIT/HRIT data for 10 days, and made comparison to the image characteristics, and understood the JPEG compression characteristics regarding JPEG compression of geostationary meteorological satellite. This result of compression performance analysis is expected to be a reference not only to the system design and realization of COMS LRIT/HRIT but also to those who develop other meteorological satellite receiving systems.

Study on Solar Constraint in the Operation of COMS Meteorological Imager

  • Cho Young-Min
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.382-385
    • /
    • 2004
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service is planned to be launched onto Geostationary Earth Orbit in 2008 according to the Korea national space program. A feasibility study on the solar constraint in the operation of the COMS meteorological imager (MI) is performed using the GOES imager hardware operation characteristics. The Earth observation areas of the MI are introduced and the observation time of the MI observation area is calculated. The sun light can enter into the MI optical system around the local midnight and impinge on the performance of the MI. The solar eclipse viewed from the satellite occurs near local midnight around the equinox. This study discusses the restriction of imaging operation time that should be considered in order to avoid the solar intrusion about local midnight and to keep acceptable image quality for the MI observation areas. This study could be useful to build the operation concept of the MI during the development of the MI.

  • PDF

A Study on the 3D Visualization of Typhoons Using the COMS Data

  • Kim, Tae-Min;Choi, Jin-Woo;Park, Jin-Woong;Kim, Hyo-Min;Oh, Sung-Nam;Yang, Young-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.753-760
    • /
    • 2011
  • The satellite Chollian was successfully launched on June 27, 2010 and is expected to perform its communication, oceanographic, and meteorological duties for seven years. The follow-up launch of the Chollian satellite is already being planned, and diverse studies are under way to enable the use of the Korean satellite data. Studies are also being actively conducted in and out of Korea to visualize the meteorological data on the open-source virtual globes. The meteorological data include ground observation, satellite, and digital-model data. In this study, an efficient three-dimensional technique was developed to visualize typhoons on the virtual globes using the Chollian satellite data. This study was conducted to provide service to the public via the scientific visualization of the satellite image data, and to create an efficient satellite image analysis environment for meteorological researchers.

SYSTEM DESIGN OF THE COMS

  • Lee Ho-Hyung;Choi Seong-Bong;Han Cho-Young;Chae Jong-Won;Park Bong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.645-648
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite), a multi-mission geo-stationary satellite, is being developed by KARl. The first mission of the COMS is the meteorological image and data gathering for weather forecast by using a five channel meteorological imager. The second mission is the oceanographic image and data gathering for marine environment monitoring around Korean Peninsula by using an eight channel Geostationary Ocean Color Imager(GOCI). The third mission is newly developed Ka-Band communication payload certification test in space by providing communication service in Korean Peninsula and Manjurian area. There were many low Earth orbit satellites for ocean monitoring. However, there has never been any geostationary satellite for ocean monitoring. The COMS is going to be the first satellite for ocean monitoring mission on the geo-stationary orbit. The meteorological image and data obtained by the COMS will be distributed to end users in Asia-Pacific area and it will contribute to the improved weather forecast.

  • PDF

Effect of Hydro-meteorological and Surface Conditions on Variations in the Frequency of Asian Dust Events

  • Ryu, Jae-Hyun;Hong, Sungwook;Lyu, Sang Jin;Chung, Chu-Yong;Shi, Inchul;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.25-43
    • /
    • 2018
  • The effects of hydro-meteorological and surface variables on the frequency of Asian dust events (FAE) were investigated using ground station and satellite-based data. Present weather codes 7, 8, and 9 derived from surface synoptic observations (SYNOP)were used for counting FAE. Surface wind speed (SWS), air temperature (Ta), relative humidity (RH), and precipitation were analyzed as hydro-meteorological variables for FAE. The Normalized Difference Vegetation Index (NDVI), land surface temperature (LST), and snow cover fraction (SCF) were used to consider the effects of surface variables on FAE. The relationships between FAE and hydro-meteorological variables were analyzed using Z-score and empirical orthogonal function (EOF) analysis. Although all variables expressed the change of FAE, the degrees of expression were different. SWS, LST, and Ta (indices applicable when Z-score was < 0) explained about 63.01, 58.00, and 56.17% of the FAE,respectively. For NDVI, precipitation, and RH, Asian dust events occurred with a frequency of about 55.38, 67.37, and 62.87% when the Z-scores were > 0. EOF analysis for the FAE showed the seasonal cycle, change pattern, and surface influences related to dryness condition for the FAE. The intensity of SWS was the main cause for change of FAE, but surface variables such as LST, SCF, and NDVI also were expressed because wet surface conditions suppress FAE. These results demonstrate that not only SWS and precipitation, but also surface variables, are important and useful precursors for monitoring Asian dust events.

Correlation Between the “seeing FWHM” of Satellite Optical Observations and Meteorological Data at the OWL-Net Station, Mongolia

  • Bae, Young-Ho;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Park, Sun-Youp;Moon, Hong Kyu;Choi, Young-Jun;Jang, Hyun-Jung;Roh, Dong-Goo;Choi, Jin;Park, Maru;Cho, Sungki;Kim, Myung-Jin;Choi, Eun-Jung;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.137-146
    • /
    • 2016
  • The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.

Scheduling North-South Mirror Motion between Two Consecutive Meteorological Images of COMS

  • Lee, Soo-Jeon;Jung, Won-Chan;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.26-31
    • /
    • 2008
  • As a multi-mission GEO satellite, Communication, Ocean, and Meteorological Satellite (COMS) is scheduled to be launched in the year 2009. COMS has three different payloads: Ka-band communication payload, Geostationary Ocean Color Imager (GOCI) and Meteorological Imager (MI). Among the three payloads, MI and GOCI have several conflict relationships; one of them is that if MI mirror moves vertically larger than 4 Line Of Sight (LOS) angle while GOCI is imaging, image quality of GOCI becomes degraded. In this paper, MI scheduling algorithm to prevent GOCI's image quality degradation will be presented.

  • PDF

Earth Observation Mission Operation of COMS during In-Orbit Test (천리안위성 궤도상 시험의 지구 관측 임무 운영)

  • Cho, Young-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.89-100
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service after the In-Orbit Test (IOT) phase. The COMS is located on $128.2^{\circ}$ East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. During the IOT phase the functionalities and the performances of the COMS satellite and ground station have been checked through the Earth observation mission operation for the observation of the meteorological phenomenon over several areas of the Earth and the monitoring of marine environments around the Korean peninsula. The operation characteristics of meteorological mission and ocean mission are described and the mission planning for the COMS is discussed. The mission operation results during the COMS IOT are analyzed through statistical approach for the study of both the mission operation capability of COMS verified during the IOT and the satellite image reception capacity achieved during the IOT.

The Parallax Correction to Improve Cloud Location Error of Geostationary Meteorological Satellite Data (정지궤도 기상위성자료의 구름위치오류 개선을 위한 시차보정)

  • Lee, Won-Seok;Kim, Young-Seup;Kim, Do-Hyeong;Chung, Chu-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • This research presents the correction method to correct the location error of cloud caused by parallax error, and how the method can reduce the position error. The procedure has two steps: first step is to retrieve the corrected satellite zenith angle from the original satellite zenith angle. Second step is to adjust the location of the cloud with azimuth angle and the corrected satellite zenith angle retrieved from the first step. The position error due to parallax error can be as large as 60km in case of 70 degree of satellite zenith angle and 15 km of cloud height. The validation results by MODIS(Moderate-Resolution Imaging Spectrometer) show that the correction method in this study properly adjusts the original cloud position error and can increase the utilization of geostationary satellite data.

IMPLEMENTATION OF SATELLITE IMAGERY INFORMATION SYSTEM FOR KOREAN METEROLOGICAL ADMINISTRATION AND ITS MEANINGS

  • Chang, Eun-Mi;Park, Jong-Seo;Suh, Ae-Sook
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.163-165
    • /
    • 2006
  • We aim to archive all the satellite images that had been scattered into Satellite Imagery Information System with setting naming rules and metadata. More than one million of scenes were collected, rectified into error-free status with metadata . Converting various formats into HDF format after considering GEOTIFF and HDF. Intranet and Internet System had been development to allow all the images to be searched and downloaded with less effort. These system will expand the usage of meteorological satellite images for expert groups and the public outside of KMA.

  • PDF