• 제목/요약/키워드: Meteorological Processes

검색결과 179건 처리시간 0.022초

중규모 기상모델에 결합된 육지표면 및 토양 과정 모델들의 특성 (Characteristics on Land-Surface and Soil Models Coupled in Mesoscale Meteorological Models)

  • 박선기;이은희
    • 대기
    • /
    • 제15권1호
    • /
    • pp.1-16
    • /
    • 2005
  • Land-surface and soil processes significantly affect mesoscale local weather systems as well as global/regional climate. In this study, characteristics of land-surface models (LSMs) and soil models (SMs) that are frequently coupled into mesoscale meteorological models are investigated. In addition, detailed analyses on three LSMs, employed by the PSU/NCAR MM5, are provided. Some impacts of LSMs on heavy rainfall prediction are also discussed.

우주기원의 고에너지 입자가 기후에 미치는 영향: 연구 현황과 정책적 시사점 (Climate Influences of Galactic Cosmic Rays (GCR): Review and Implications for Research Policy)

  • 김지영;장근일
    • 대기
    • /
    • 제27권4호
    • /
    • pp.499-509
    • /
    • 2017
  • Possible links among cosmic ray, cloud, and climate have scientific uncertainties. The reputed topics have been highly controversial during several decades. A link between the atmospheric ionization by galactic cosmic rays (GCR), which is modulated by solar activities, and global cloud cover was firstly proposed in 1997. Some researchers suggested that the GCR can stimulate the formation of cloud condensation nuclei (CCN) in the atmosphere, and then the higher CCN concentrations may lead to an increase of cloud cover, resulting in a cooling of the Earth's climate, and vise versa. The CLOUD (Cosmic leaving outdoor droplets) experiment was designed to study the effect of GCR on the formation of atmospheric aerosols and clouds under precisely controlled laboratory conditions. A state-of-the-art chamber experiment has greatly advanced our scientific understanding of the aerosol formation in early stage and its nucleation processes if the GCR effect is considered or not. Many studies on the climate-GCR (or space weather) connection including the CLOUD experiment have been carried out during the several decades. Although it may not be easy to clarify the physical connection, the recent scientific approaches such as the laboratory experiments or modeling studies give some implications that the research definitively contributed to reduce the scientific uncertainties of natural and anthropogenic aerosol radiative forcing as well as to better understand the formation processes of fine particulate matters as an important parameter of air quality forecast.

기상청 현업 지역통합모델 물리과정 최적화를 통한 예측 성능 향상 (The Improvement of Forecast Accuracy of the Unified Model at KMA by Using an Optimized Set of Physical Options)

  • 이주원;한상옥;정관영
    • 대기
    • /
    • 제22권3호
    • /
    • pp.345-356
    • /
    • 2012
  • The UK Met Office Unified Model at the KMA has been operationally utilized as the next generation numerical prediction system since 2010 after it was first introduced in May, 2008. Researches need to be carried out regarding various physical processes inside the model in order to improve the predictability of the newly introduced Unified Model. We first performed a preliminary experiment for the domain ($170{\times}170$, 10 km, 38 layers) smaller than that of the operating system using the version 7.4 of the UM local model to optimize its physical processes. The result showed that about 7~8% of the improvement ratio was found at each stage by integrating four factors (u, v, th, q), and the final improvement ratio was 25%. Verification was carried out for one month of August, 2008 by applying the optimized combination to the domain identical to the operating system, and the result showed that the precipitation verification score (ETS, equitable threat score) was improved by 9%, approximately.

대용량 기후모델자료를 위한 통합관리시스템 구축 (Development of Climate & Environment Data System for Big Data from Climate Model Simulations)

  • 이재희;성현민;원상호;이조한;변영화
    • 대기
    • /
    • 제29권1호
    • /
    • pp.75-86
    • /
    • 2019
  • In this paper, we introduce a novel Climate & Environment Database System (CEDS). The CEDS is developed by the National Institute of Meteorological Sciences (NIMS) to provide easy and efficient user interfaces and storage management of climate model data, so improves work efficiency. In uploading the data/files, the CEDS provides an option to automatically operate the international standard data conversion (CMORization) and the quality assurance (QA) processes for submission of CMIP6 variable data. This option increases the system performance, removes the user mistakes, and increases the level of reliability as it eliminates user operation for the CMORization and QA processes. The uploaded raw files are saved in a NAS storage and the Cassandra database stores the metadata that will be used for efficient data access and storage management. The Metadata is automatically generated when uploading a file, or by the user inputs. With the Metadata, the CEDS supports effective storage management by categorizing data/files. This effective storage management allows easy and fast data access with a higher level of data reliability when requesting with the simple search words by a novice. Moreover, the CEDS supports parallel and distributed computing for increasing overall system performance and balancing the load. This supports the high level of availability as multiple users can use it at the same time with fast system-response. Additionally, it deduplicates redundant data and reduces storage space.

도시기상 관측을 위한 메타데이터의 표준화 (Standardization of Metadata for Urban Meteorological Observations)

  • 송윤영;채정훈;최민혁;박문수;최영진
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.600-618
    • /
    • 2014
  • The metadata for urban meteorological observation is standardized through comparison with those established at the World Meteorological Organization and the Korea Meteorological Administration to understand the surrounding environment around the sites exactly and maintain the networks and sites efficiently. It categorizes into metadata for an observational network and observational sites. The latter is again divided into the metadata for station general information, local scale information, micro scale information, and visual information in order to explain urban environment in detail. The metadata also contains the static information such as urban structure, surface cover, metabolism, communication, building density, roof type, moisture/heat sources, and traffic as well as the update information on the environment change, maintenance, replacement, and/or calibration of sensors. The standardized metadata for urban meteorological observation is applied to the Weather Information Service Engine (WISE) integrated meteorological sensor network and sites installed at Incheon area. It will be very useful for site manager as well as researchers in fields of urban meteorology, radiation, surface energy balance, anthropogenic heat, turbulence, heat storage, and boundary layer processes.

Design and Development of Meteorological Data Logger

  • Ng, Yin-Yeo;Park, Soo-Hong
    • Journal of information and communication convergence engineering
    • /
    • 제8권6호
    • /
    • pp.671-676
    • /
    • 2010
  • In this paper, an effort has been made to design and develop a meteorological data logger for meteorological purpose. This data logger is proposed to be included various sensor interface that used in weather sensors. Besides, numbers of meteorological process libraries are added into this data logger to make it able to perform as unattended weather monitoring system. Data output of this data logger are also design to support multiple protocol that commonly used in data logger, and several communication devices that commonly used in the market. Each data that logged will be logged together with date and time and able to retrieve via serial port using hyper terminal. It is also configurable via serial port.

현업용 기상위성에 대한 주도권 다툼: 1960년 TIROS 발사 이후 (Competing for the Responsibility of the Operational Meteorological Satellite Program: After the Launch of TIROS in 1960)

  • 안명환
    • 대기
    • /
    • 제24권2호
    • /
    • pp.265-281
    • /
    • 2014
  • Currently, Korea is developing a Cheollian follow-on satellite program, named as Geostationary Korea Multipurpose Satellite 2 (GK-2), which consists of two satellites. One satellite (GK-2A) is dedicated to the meterological mission, while the second one (GK-2B) hosts two main payloads for the ocean and environmental application. As GK-2A is dedicated to the meteorological mission unlike Cheollian, there have been discussions on the possibility of transferring the responsibilities of the GK-2A program to the Korea Meteorological Administration. To help resolve any consumptive disputes or to find an efficient way for the GK-2A program, the events happened after the successful launch of the first meteorological satellite TIROS-1 in the U.S. in April 1960 are investigated. With the successful demonstration of usefulness of TIROS-1 for the meteorological applications, organizations such as the Weather Bureau and the Department of Defense, responsible for the real time application of the TIROS 1 data, strongly requested for an operational meteorological satellite program which resulted in the plan for the National Operational Meteorological Satellite System (NOMSS). The plan was strongly supported by Kennedy Adminstration and was put forwarded for the new program under the responsibility of Weather Bureau to the Congress. However, the responsible Committee on Science and Aeronautics sided with NASA and requested major revision of the responsibility. Due to many unfavorable conditions, Weather Bureau accepted the requests and signed with NASA on the agreement for the operational meteorological satellite. However, with the delay of Nimbus satellite which is planned to be used for the prototype of the operational satellite and changes of the unfavorable situations, the Weather Bureau could draw a second agreement with NASA. The new agreement reflected most propositions requested by the Weather Bureau for the NOMSS plan. Until now the second agreement is regarded as the basic principles for the operational meteorological satellite program in the U.S. This study investigates the backgrounds and processes of the second agreement and its implications for the GK-2 program.

GIS-based Meteorological Data Processing Technology for Forest Fire Danger Rating Forecast System of China

  • Zhao, Yinghui;Zhen, Zhen;Li, Fengri
    • 한국산림과학회지
    • /
    • 제99권2호
    • /
    • pp.197-203
    • /
    • 2010
  • The data of average temperature, average relative humidity, precipitation and average wind speed were collected from 674 meteorological stations in China. A specific procedure that processes original data into a new data format needed in forest fire danger rating forecast system of China was introduced systematically, and the feasibility of this method was validated in this paper. In addition, a set of meteorological data processing software was constructed by the secondary development of GIS in order to realize automation of processing data for the system. Results showed that the approach preformed well in handling temperature, average relative humidity and average wind speed, and the processing effect of precipitation was acceptable. Moreover, the automated procedure could be achieved by GIS and the working efficiency was about 3 times as much as that of manual handling. The informationization level of processing meteorological data was greatly enhanced.

기상자료에 따른 대기오염확산 민감도평가 -대구성서산업단지에 대한 사례연구- (Sensitivity of Air Pollutants Dispersion According to the Selection of Meteorological Data - Case of Seongseo Industrial Complex of Daegu -)

  • 박명희;김해동;박미영
    • 한국환경과학회지
    • /
    • 제14권2호
    • /
    • pp.141-156
    • /
    • 2005
  • The importance of atmospheric conditions for the assessment of an air pollution situation has been demonstrated by their influence on the various compartments of an air pollution system, comprising all stages from emission to effects. Especially, air pollutants dispersion phenomenon are very sensitive according to wind data. But the discussions of how to apply representative meteorological data in air pollution dispersion model are not frequent in Korean environmental assessment processes. In this study, we investigated the difference of air pollutants dispersion phenomenon using U.S EPA ISCLT3 model according to applying the different meteorological data observed at two points for Seongseo industrial complex of Daegu. Two points are the spot site of Seongseo industrial complex and Daegu meteorological observatory. The winds speed of the spot site were smaller than those of Daegu meteorological observatory. In the winter season, the differences came to about $64\%$ for the period$(I\;February\;2001\~31\;January\;2002)$. Wind directions were also fairly different at two points. The air pollutants dispersion phenomenon estimated from our numerical experiments were also fairly different owing to the meteorological conditions at two points.

무인 해양관측기 (ARGO 플로트) 자료를 이용한 울릉분지 및 독도 주변해역 해황 변동성 분석 (Variability of Ocean Status around Ulleung Basin and Dok-do by using ARGO Data)

  • 윤용훈;장유순;현유경;조창우;구자옥;조민광;반영석;박성준;김수정
    • 대기
    • /
    • 제16권4호
    • /
    • pp.379-385
    • /
    • 2006
  • Meteorological Research Institute (METRI) participates the R&E (Research and Education) program of Korea Science and Engineering Foundation,"Variability of ocean status around Ulleung basin and Dok-do by using ARGO data" as a part of "Carricula development for gifted students" program. From this program, we support students to have an opportunity for handling scientific data with advanced technology and inspire their scientific interests. In this article, we introduce the training processes of this program and the results of data analysis by the students themselves.