• Title/Summary/Keyword: Metaverse device

Search Result 24, Processing Time 0.017 seconds

An Extended Reality-based Data Visualization Supporting Heterogeneous Remote Collaboration (이기종 원격협업을 지원하는 확장현실 기반 데이터 시각화)

  • Hyoji Ha;Hyeonwoo Kim;Yongseo Kim;Sanghun Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.87-97
    • /
    • 2024
  • This study aims to develop a system that enables users employing PC and VR devices to collaboratively analyze data visualizations in a remote environment. The system provides a task-oriented node-link control interface to aid users in understanding the visualization analysis process and effectively distributing roles. Additionally, it offers a network environment where multiple users can collaborate and receive feedback on visualization analysis even when physically separated. To elucidate the collaborative analysis method implemented in the system, we designed a scenario. Furthermore, we conducted a pilot experiment to evaluate the system's usability with participants majoring in related fields. The experimental results confirmed that users can freely analyze data through easily comprehensible interface manipulations in an extended reality space, and efficiently conduct real-time collaborative analysis in a remote environment.

Implementation of Joystick for Flight Simulator using WiFi Communication

  • Myeong-Chul Park;Sung-Ho Lee;Cha-Hun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.111-118
    • /
    • 2023
  • In this paper, we propose a WiFi-based joystick with an acceleration sensor and a vibration sensor that can be used in flight simulators and VR fields. The flight simulator is a technology belonging to the ICT and SW application field and provides a simulation environment that reproduces the aircraft environment. Existing flight simulator control devices are fixed to a specific device and the user's activity area is limited. In this paper, a 3D space manipulation device was implemented for the user's free use of space. In addition, the proposed control device is designed as a WiFi communication board and display that displays information and performs 3-axis sensing for accurate and sophisticated control compared to existing VR equipment controllers. And the applicability was confirmed by implementing a Unity-based virtual environment. As a result of the implementation device verification, it was confirmed that the control device operates normally through the communication interface, It was confirmed that the sensing values in the game and the sensing values measured on the implemented board matched each other. The results of this study can be used for VR and various metaverse related contents in addition to flight simulators.

Implementing Geometry Packing for MPEG Immersive Video (MPEG 몰입형 비디오를 위한 Geometry Packing 구현)

  • Jong-Beom, Jeong;Soonbin, Lee;Eun-Seok, Ryu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.861-871
    • /
    • 2022
  • The moving picture experts group (MPEG) developed the MPEG immersive video (MIV) standard for efficient compression of multiple immersive videos representing natural contents and computer graphics. The MIV compresses multiple immersive videos and generates multiple output videos which are defined as atlases. However, there is a synchronization issue of multiple decoders in a legacy device when decoding multiple encoded atlases. This paper proposes and implements the geometry packing method for adaptive control of decoder instances for low-end and high-end devices. The proposed method on the recent version of the MIV reference software worked correctly.

Building Fire Monitoring and Escape Navigation System Based on AR and IoT Technologies (AR과 IoT 기술을 기반으로 한 건물 화재 모니터링 및 탈출 내비게이션 시스템)

  • Wentao Wang;Seung-Yong Lee;Sanghun Park;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.159-169
    • /
    • 2024
  • This paper proposes a new real-time fire monitoring and evacuation navigation system by integrating Augmented Reality (AR) technology with Internet of Things (IoT) technology. The proposed system collects temperature data through IoT temperature measurement devices installed in buildings and automatically transmits it to a MySQL cloud database via an IoT platform, enabling real-time and accurate data monitoring. Subsequently, the real-time IoT data is visualized on a 3D building model generated through Building Information Modeling (BIM), and the model is represented in the real world using AR technology, allowing intuitive identification of the fire origin. Furthermore, by utilizing Vuforia engine's Device Tracking and Area Targets features, the system tracks the user's real-time location and employs an enhanced A* algorithm to find the optimal evacuation route among multiple exits. The paper evaluates the proposed system's practicality and demonstrates its effectiveness in rapid and safe evacuation through user experiments based on various virtual fire scenarios.