• Title/Summary/Keyword: Metastable phase

Search Result 117, Processing Time 0.027 seconds

TEM Diffraction Analysis of Metastable Phases in Beta Ti Alloys (베타 티타늄합금의 준 안정상 TEM 회절도형 분석)

  • Choe, Byung Hak;Shim, Jong Heon;Kim, Seung Eon;Hyun, Yong Taek;Park, Chan Hee;Kang, Joo-Hee;Lee, Yong Tai;Kim, Young Ouk
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.403-409
    • /
    • 2015
  • Metastable phase characteristics of beta Ti alloys were investigated to consider the relationship of the microstructure and diffraction pattern in TEM. TEM analysis showed that the microstructure was mottled as a modulated structure, and the diffraction pattern was composed of spot streaks between the main spots of a stable beta phase with a specific lattice relationship. The modulated structure may be induced by short distance slip or atom movement during a very short interval of solution treated and quenched (STQ) materials. The athermal ${\omega}$ phase, which could be precipitated at low temperature aging, is also analysed by the metastable phase. The metastable phases including athermal ${\omega}$ phase had a common characteristic of hardened and brittle behavior because the dislocation slip was restricted by a super lattice effect due to short distance atom movement at the metastable state.

Strategies to Induce Metastable T' Phase of Monolayer MoS2

  • Gang, Seong-U
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.417-423
    • /
    • 2017
  • Monolayer $MoS_2$의 metastable phase인 T' phase가 stable한 H phase보다 안정해지는 조건을 모색하기 위해 substitutional doping을 했을 때와 strain을 걸어주었을 때의 에너지 차이를 DFT 방법으로 계산하였다. Doping을 했을 때와 strain이 있을 때 T' phase와 H phase의 에너지 차이가 감소함을 확인하였으나 H phase보다 T' phase가 안정해지는 조건을 찾지는 못하였다. 하지만 이 방법을 기존의 alkali adsorption 방법과 병행하여 기존 방법의 단점을 보완할 수 있을 것을 기대해 볼 수 있다. 또한 전자구조 분석 중 얻은 dopant의 주기와 족에 따른 경향성은 다른 TMD 물질의 phase engineering을 design할 때 universal한 design rule로서 응용할 수 있음을 기대해 볼 수 있다.

  • PDF

Microstructural evolution and mechanical properties of $Al_{71.6}Ge_{28.4}$ eutectic alloy ($Al_{71.6}Ge_{28.4}$ 공정합금의 미세구조 및 기계적 성질의 평가)

  • Park, Jin-Man;Yook, Wan;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.27 no.4
    • /
    • pp.167-172
    • /
    • 2007
  • In the present study, the microstructural evolution and mechanical properties of $Al_{71.6}Ge_{28.4}$ eutectic alloy have been investigated. Stable (fcc ${\alpha}$-Al and diamond cubic ${\beta}$-Ge) and various metastable crystalline (monoclinic, rhombohedral) phases were produced by competitive phase selection during non-equilibrium processing methods i.e. melt spinning and injection casting. The as-injection casted samples containing metastable-equilibrium eutectic (${\alpha}$-Al + monoclinic) structure showed much higher strength than samples with equilibrium eutectic (${\alpha}-Al+{\beta}-Ge$) structure but plasticity disappointingly diminished. In order to endow the enhanced ductility without significant strength drop, the alloys was heat-treated at transition temperature from metastable phase to stable phase. The annealed specimen displayed the phase transformed microstructural evolution and enhanced macroscopic plasticity.

Isothermal Age-hardening Behavior in the Commercial Dental Au-Ag-Cu-Pd Alloy (시판 치과용 Au-Ag-Cu-Pd 합금의 등온시효경화거동)

  • Kim, Hyung-Il;Jang, Myoung-Ik;Lee, You-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.247-254
    • /
    • 1996
  • The relationship between the isothermal age-hardening behavior and the phase transformation in the commercial dental Au-Ag-Cu-Pd alloy was investigated Age-hardening was mostly attributed to the lattice distortions of the supersaturated w phase resulting from the transformation to the metastable phasel which were more distinct at lower aging temperature. The lattice distortions resulting from the transformation of the metastable phases to the equilibrium phases also made a contribution to the age-hardening.

  • PDF

A Study on the Precipitates in Rapidly Solidified Al-(Fe, Ce) Alloys by Analysis of X-Ray Diffraction (급냉응고된 Al-(Fe, Ce) 합금에서 형성되는 석출상의 X-선적연구)

  • Park, Ik-Min;Lee, Kyu-Han;Choe, Jeong-Cheol;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.446-452
    • /
    • 1988
  • To obtain detailed information on the metastable and the equilibrium phases in rapidly solidified Al-(Fe,Ce) alloys, analysis of X-ray diffraction pattern has been carried out. It has been found that the metastable phase formed in Al-Fe alloys including up to 6wt%Fe is $Al_6Fe$ and the equilibrium phase is $Al_3Fe$. Any X-ray diffraction peak corresponding to the equilibrium phase $Al_{13}Fe_4$ has not been observed during aging. In Al-4wt%Fe alloy, which is ribbon shape with thickness less than $70\;{\mu}m$, aged at $400^{\circ}C$ for 1h after rapid solidification, unidentified phase has been found. In Al-4wt%Ce alloy, only X-ray diffraction peak corresponding to the equilibrium phase, $Al_4Ce$ has been observed. It has been found that the metastable phase Formed in Al-Fe-Ce alloys including up to 6wt% Fe and 4wt% Ce is $Al_6Fe$ and the equilibrium phases are $Al_3Fe$ and $Al_{10}CeFe_2$.

  • PDF

Analysis on Temper Embrittlement and Metastable Phase of Martensitic Stainless Steel (마르텐사이트계 스테인리스강의 템퍼 취성과 준안정상에 관한 분석)

  • Lee, Gil Jae;Choe, Byung Hak;Kim, Jae Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • The martensitic stainless steel has excellent corrosion resistance and higher strength by quenching and tempering heat treatment. It has been widely used as blade material due to these properties. The hardness and impact toughness of martensitic stainless steel depended strongly on tempering temperatures. The 12Cr martensite stainless steel (SS 410) tempered about 540℃ showed temper embrittlement. To know cause of temper embrittlement in terms of phase identification, a detailed analysis of electron diffraction patterns during TEM observations has been carried out on the <110>α-Fe and <113>α-Fe zone axes for temper embrittlement specimen. The double electron diffraction spots at 1/3(211) and 2/3(211) positions were observed. The lattice space between individual diffraction spots was about 3.5 Å and this value coincide with three times to α-bcc lattice space (1.17 Å). The area which found double diffraction spots was judged metastable "zone" similar to the omega phase and induced embrittlement of SS410 material.

The "Orthorhombic" Metastable Phase in the System of $NaAlSi_3O_8-CaAl_2Si_2O_8$ ($NaAlSi_3O_8-CaAl_2Si_2O_8$계의 "Immm-강조형" 부안정상)

  • 정수진;임응극;김기수;김영진
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 1982
  • The crystallization of metastable "orthorhombic" phase from the glass in the system of Na $AlSi_3O_8-CaAl_2Si_2O_8$ is studied. These crystals are crystallized in the range of composition from $Ab_80An_20$ to An100. The symmetry of these crystals show orthorhombic as a possible space group P22121. Two probable twin models are proposed. proposed.

  • PDF

Formation and Thermal Decomposition of a Quasicrystalline Phase in Al-Fe-Mo Alloys (Al-Fe-Mo 합금에서 준결정상의 생성 및 열분해에 관한 연구)

  • Kim, Suk Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.6
    • /
    • pp.362-368
    • /
    • 2005
  • Formation and thermal stability of a quasicrystalline phases in Al-Fe-Mo alloys were investigated by means of melt-spinning process and subsequent heat treatment test. Thermal decomposition and phase transformation process of the as-spun alloys were studied using X-ray diffraction and electron microscopy. The melt-spun Al-Fe-Mo alloys contained an icosahedral quasicrystalline phase with a quasilattice constant of 0.457 nm. Icosahedral phase formed at a composition of $Al_{82.5}Fe_{14}Mo_{3.5}$ as a metastable phase during rapid solidification was transformed into the stable crystalline phases, cubic 1/0 approximant and monoclinic ${\lambda}$-phase, upon heating. A metastable icosahedral and cubic(a = 0.93 nm) phases in as-spun $Al_{65}Fe_{20}Mo_{15}$ alloy were decomposed into two cubic(a = 0.62, 0.31 nm) phases by heat treatment.

Product Phase Control During Interdiffusion Reactions (상호 확산 반응 중의 생성상 제어)

  • Park, Joon-Sik;Kim, Ji-Hoon;Perepezko, John R.
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • Phase evolutions involving nucleation stages together with diffusional growth have been examined in order to provide a guideline for determining rate limiting stages during phase evolutions. In multiphase materials systems in coatings, composites or multilayered structures, diffusion treatments often result in the development of metastable/intermediate phases at the reaction interfaces. The development of metastable phases during solid state interdiffusion demonstrates that the nucleation reaction can be one controlling factor. Also, the concentration gradient and the relative magnitudes of the component diffusivities provide a basis for a phase selection and the application of a kinetic bias strategy in the phase selection. For multicomponent alloy systems, the identification of the operative diffusion pathway is central to control phase formation. Experimental access to the nucleation and growth stage is discussed in thin film multi layers and bulk samples.

Phase Transformation in Al-4at.%Zr Alloy during Mechanical Alloying and Heat-treatment Processes (Al-4at.%Zr합금의 기계적합금화 공정과 열처리과정에서 발생하는 상변화거동)

  • Park, Jae-Pil;Kim, Il-Ho;Kwun, S.I.
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.36-42
    • /
    • 2005
  • Four different mechanical alloying(MA) processes were employed to fabricate very fine intermetallic compound $Al_3Zr$ particles dispersed Al composite materials(MMC) with Al-4at.%Zr composition. Phase transformations including phase stability during MA and heat treatment processes were investigated. Part of Zr atoms were dissolved into Al matrix and part of them reacted with hydrogen produced by decomposition of PCA(methanol) to form hydride $ZrH_2$ during first MA process. These $ZrH_2$ hydrides disappeared when alloy powders were heat treated at $500^{\circC}$. Stable $Al_3Zr$ dispersoids with $DO_23$ structure were formed by heat treating the mechanically alloyed powders at $400^{\circC}$. On the other hand, metastable $Al_3Zr$dispersoids with $L1_2$ structure were formed during first MA of powers with Al-25at.%Zr composition. These metastable $Al_3Zr$ dispersoids transformed to stable $Al_3Zr$ with $DO_23$ structure when heat treated above $450^{\circC}$.