• 제목/요약/키워드: Metallurgical phases

검색결과 135건 처리시간 0.02초

오스테나이트와 마르텐사이트 2상 조직을 갖는 202 스테인리스강의 공식에 미치는 오스테나이트의 영향 (Effect of Austenite on the Pitting Corrosion of 202 Stainless Steel with Two Phases of Austenite and Martensite)

  • 김종식;김영화;김희원;구정엽;성지현;강창룡
    • 동력기계공학회지
    • /
    • 제20권1호
    • /
    • pp.36-41
    • /
    • 2016
  • Effects of austenite on the pitting corrosion in 202 stainless steel with two phase of austenite and martensite were investigated through the electrochemical polarization test. Two phases structures of martensite and austenite were obtained by reversed annealing treatment at the range of $500^{\circ}C-700^{\circ}C$ for 10min. in 70% cold-rolled 202 stainless steel. Volume fraction of reversed austenite has increased rapidly with an increase of annealing temperature. Pitting corrosion has arisen mainly on martensite phase in 202 stainless steel with two phases of austenite and martensite. Pitting current density has decreased with an increase of volume fraction of austenite. Consequently, pitting corrosion at martensite has occurred largely with an increase of volume fraction of austenite. Pitting corrosion was affected by volume fraction of austenite.

Experimental Studies on Submerged Arc Welding Process

  • Kiran, Degala Ventaka;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.1-10
    • /
    • 2014
  • The efficient application of any welding process depends on the understanding of associated process parameters influence on the weld quality. The weld quality includes the weld bead dimensions, temperature distribution, metallurgical phases and the mechanical properties. A detailed review on the experimental and numerical approaches to understand the parametric influence of a single wire submerged arc welding (SAW) and multi-wire SAW processes on the final weld quality is reported in two parts. The first part deals with the experimental approaches which explain the parametric influence on the weld bead dimensions, metallurgical phases and the mechanical properties of the SAW weldment. Furthermore, the studies related to statistical modeling of the present welding process are also discussed. The second part deals with the numerical approaches which focus on the conduction based, and heat transfer and fluid flow analysis based studies in the present welding process. The present paper is the first part.

γ와 α' 2상 조직을 갖는 202 스테인리스강의 균일부식에 미치는 γ의 영향 (Effect of γ on the Uniform Corrosion of 202 Stainless Steel with Two Phases of γ and α)

  • 김영화;허성화;김성희;이상환;강창룡
    • 열처리공학회지
    • /
    • 제28권4호
    • /
    • pp.200-205
    • /
    • 2015
  • Effects of austenite on the uniform corrosion in the solution of $1\;N\;H_2SO_4$ were investigated through the electrochemical polarization test. Two phases structures of martensite and austenite were obtained by annealing treatment at the range of $500^{\circ}C{\sim}700^{\circ}C$ for 10min. in 70% cold-rolled 202 stainless steel. Volume fraction of reversed austenite increased rapidly with an increase of annealing temperature. Uniform Corrosion was occur mainly on martensite phase in 202 austenitic stainless steel with two phase of austenite and martensite. Corrosion current density increased with an increase of volume fraction of austenite, therefore uniform corrosion was affected by volume fraction of austenite

용탕단조법에 의한 고강도 Mg-Li-Al합금 제조 (Fabrication of High Strength Mg-Li-Al Alloys by Squeeze Casting Process)

  • 한창화;황영하;김영우;김도향;홍준표
    • 한국주조공학회지
    • /
    • 제17권3호
    • /
    • pp.267-275
    • /
    • 1997
  • Fabrication of high strength Mg-Li-Al alloys by squeeze casting was established by the stabilization of melt and mold temperatures, applied pressure and the refining method. The entrapment of inclusions during pouring was prevented using 30 ppi alumina foam filter. The as-cast microstructure consists of a mixture of ${\alpha}$ and ${\beta}$ phases including AILi and $MgLi_2$, Al particles, which are distributed in the ${\beta}$ matrix. The grain sizes of gravity and squeeze casting alloys were 288 ${\mu}m$ and 207 ${\mu}m$ respectively. The addition of Al in Mg-Li alloys promoted the formation of second phase particles, which were adjusted to optimize the properties of Mg-Li-Al alloys. The Mg-10wt%Li-5wt%Al alloy after heat treatment at $350^{\circ}C$ for 1 hour showed the maximum hardness value. This is due to the facts that the amounts of ${\alpha}$ and ${\beta}$ phases and their distributions are dependent upon the solution treatment temperature, and that the amounts of AILi and $MgLi_2Al$ particles are dependent upon the Al content.

  • PDF

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

Mg-Zn-Y 합금에서 준결정 및 준결정 유사상 (Quasicrystals And Related Approximant Phases in Mg-Zn-Y)

  • 박은수;옥재범;김원태;김도향
    • Applied Microscopy
    • /
    • 제32권1호
    • /
    • pp.31-37
    • /
    • 2002
  • [ $Mg_{68}Zn_{28}Y_4$ ] 합금의 응고 조직은 primary solidification phase, primary solidification phase로부터 성장된 ${\alpha}-Mg$ dendrite, 그리고 응고 말기에 형성된 eutectic structure의 세 가지형태 조직으로 구성되어져 있다. Primary solidification phase에는 매우 큰 정도의 phason strain이 존재하고 있으며, $a=27.2{\AA}\;and\;{\alpha}=63.43^{\circ}$의 격자상수를 갖는 1/1 rhombohedral approximant가 존재한다. 이와 같은 rhombohedral approximant의 구조는 six dimensional face centered hyper-cubic lattice에 phason strain을 도입함에 의해 얻어질 수 있다. Decagonal phase는 icosahedral phase로부터 방위 관계를 가지며 형성되며, $Mg_4Zn_7$는 decagonal phase로부터 방위관계를 가지며 성장한다. 이는 세 상간에 구조적 유사성이 존재하고 있음을 의미하며, 응고시 용질원자의 분배에 의해 이들 세 상이 순서대로 형성되어진다.

컴퓨터 시뮬레이션에 의한 FRP 복합재료의 도전경로 형성에 미치는 제2상의 영향 (Effect of Second Phase on the Conduction Path Forming in Composites FRP by Computer Simulation)

  • 신순기;임현주;이준희
    • 한국재료학회지
    • /
    • 제13권11호
    • /
    • pp.756-760
    • /
    • 2003
  • Two dimensional computer simulations were conducted on percolative structure in which second phases with various short diameter were arranged in matrix phase. In case of prohibiting the overlap among the second phases, the maximum area fraction of second phase arranged in matrix was increased with higher short diameter. In case of allowing the overlap among the second phases, the critical area fraction was increased with higher short diameter and the total number of distributed second phase was decreased. This results represented that thickness variation of short diameter by grain growth on the production processes affect significantly forming the completion path.

슈퍼 2상 스테인리스강에서 χ와 σ상의 석출거동에 미치는 W치환의 영향 (Effect of W Substitution on the Precipitation Behavior of χ and σ Phase in Super Duplex Stainless Steels)

  • 한현성;김성휘;강창룡
    • 한국재료학회지
    • /
    • 제26권4호
    • /
    • pp.200-206
    • /
    • 2016
  • This study was carried out to investigate the effect of W substitution on the precipitation behavior of ${\chi}$ and ${\sigma}$ phases in super duplex stainless steel. The ${\chi}$ phase was precipitated at the interface of ferrite / austenite phases and inside the ferrite phase at the initial stage of aging. With an increase in the aging time, the volume fraction of the ${\chi}$ phase increased, and then decreased with the transformation from the ${\chi}$ phase to the ${\sigma}$ phase. The ${\sigma}$ phase was precipitated later than the ${\chi}$ phase, and the volume fraction of x phase increased with the increase in the aging time. The ferrite phase was decomposed into the new austenite (${\gamma}2$) and ${\sigma}$ phases by aging treatment. The decomposition of the ferrite phase into the ${\gamma}2$ and ${\sigma}$ phases was retarded by W substitution for Mo. The volume fraction of the ${\chi}$ phase increased and that of the ${\sigma}$ phase decreased due to W substitution. The ${\chi}$ and ${\sigma}$ phases were intermetallic compounds, which had lower nickel concentration, and higher chromium, molybdenum, and tungsten concentrations. The ${\chi}$ phase has higher molybdenum and tungsten concentrations than those of the ${\sigma}$ phase. The amounts of chromium and nickel in the ${\chi}$ and ${\sigma}$ phases did not change, but these phases have higher concentrations of molybdenum and tungsten due to W substitution for Mo.

Fluctuation of Solid-Liquid Interface of Faceted Phase and Nonfaceted Phase by Periodic Temperature Variation

  • Oh, Sung-Tag;Kim, Young Do;Song, Young-Jun;Suk, Myung-Jin
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.644-648
    • /
    • 2016
  • In order to examine how the solid-liquid interface responds to temperature variation depending on the materials characteristics, i.e. faceted phase or nonfaceted phase, the moving solid-liquid interface of transparent organic material, as a model substance for metallic materials (pivalic acid, camphene, salol, and camphor-50wt% naphthalene) was observed in-situ. Plots of the interface movement distance against time were obtained. The solid-liquid interface of the nonfaceted phase is atomically rough; it migrates in continuous mode, giving smooth curves of the distance-time plot. This is the case for pivalic acid and camphene. It was expected that the faceted phases would show different types of curves of the distance-time plot because of the atomically smooth solid-liquid interface. However, salol (faceted phase) shows a curve of the distance-time plot as smooth as that of the nonfaceted phases. This indicates that the solid-liquid interface of salol migrates as continuously as that of the nonfaceted phases. This is in contrast with the case of naphthalene, one of the faceted phases, for which the solid-liquid interface migrates in "stop and go" mode, giving a stepwise curve of the distance-time plot.