• 제목/요약/키워드: Metallurgical aspects

검색결과 13건 처리시간 0.025초

대형 링단조품의 결함원인 분석 및 대책 (Failure Analysis of Large Ring Forged Products)

  • 진상욱;이영선;김상식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.107-113
    • /
    • 2009
  • In this study, the importance of failure analysis on large ring forged products was assessed and the process and methodology were introduced. Failure analysis case study of the large ring forged steel product with approximately 10 mm long internal crack found by non-destructive test (NDT) was presented. The micrographic and fractographic observations and the verifying tests were conducted on the cracked specimen to identify the possible metallurgical reason for the defects, and the metallurgical aspects of internal crack formation were discussed.

  • PDF

Designing Materials for Hard Tissue Replacement

  • Nath, Shekhar;Basu, Bikramjit
    • 한국세라믹학회지
    • /
    • 제45권1호
    • /
    • pp.1-29
    • /
    • 2008
  • In last two decades, an impressive progress has been recorded in terms of developing new materials or refining existing material composition/microstructure in order to obtain better performance in biomedical applications. The success of such efforts clearly demands better understanding of various concepts, e.g. biocompatibility, host response, cell-biomaterial interaction. In this article, we review the fundamental understanding that is required with respect to biomaterials development, as well as various materials and their properties, which are relevant in applications, such as hard tissue replacement. A major emphasize has been placed to present various design aspects, in terms of materials processing, of ceramics and polymer based biocomposites, Among the bioceramic composites, the research results obtained with Hydroxyapatite (HAp)-based biomaterials with metallic (Ti) or ceramic (Mullite) reinforcements as well as $SiO_2-MgO-Al_2O_3-K_2O-B_2O_3-F$ glass ceramics and stabilized $ZrO_2$ based bioinert ceramics are summarized. The physical as well as tribological properties of Polyethylene (PE) based hybrid biocomposites are discussed to illustrate the concept on how can the physical/wear properties be enhanced along with biocompatibility due to combined addition of bioinert and bioactive ceramic to a bioinert polymeric matrix. The tribological and corrosion properties of some important orthopedic metallic alloys based on Ti or Co-Cr-Mo are also illustrated. At the close, the future perspective on orthopedic biomaterials development and some unresolved issues are presented.

Modern Laser Technology and Metallurgical Study on Laser Materials Processing

  • Kutsuna, Muneharu
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.561-569
    • /
    • 2002
  • Laser has been called a "Quantum Machine" because of its mechanism of generation since the development on July 7,1960.by T.H.Maiman. We can now use this machine as a tool for manufacturing in industries. At present, 45kW CO2 laser, 10kW Nd:YAG laser, 6kW LD pumped YAG laser and 4kW direct diode laser facilities are available for welding a heavy steel plate of 40mm in thickness and for cutting metals at high speed of 140m/min. Laser Materials Processing is no longer a scientific curiosity but a modern tool in industries. Lasers in manufacturing sector are currently used in welding, cutting, drilling, cladding, marking, cleaning, micro-machining and forming. Recently, high power laser diode, 10kW LD pumped YAG laser, 700W fiber laser and excimer laser have been developed in the industrialized countries. As a result of large numbers of research and developments, the modem laser materials processing has been realized and used in all kinds of industries now. In the present paper, metallurgical studies on laser materials processing such as porosity formation, hot cracking and the joint performances of steels and aluminum alloys and dissimilar joint are discussed after the introduction of laser facilities and laser applications in industries such as automotive industry, electronics industry, and steel making industry. The wave towards the use of laser materials processing and its penetration into many industries has started in many countries now. Especially, development of high power/quality diode laser will be accelerate the introduction of this magnificent tool, because of the high efficiency of about 50%, long life time and compact.

  • PDF

칼슘기 벌크 비정질 합금에서 비정질 형성능 평가 (Evaluation of Glass-forming Ability in Ca-based Bulk Metallic Glass Systems)

  • 박은수;김도향
    • 한국주조공학회지
    • /
    • 제29권4호
    • /
    • pp.181-186
    • /
    • 2009
  • The interrelationship between new parameter ${\sigma}$ and maximum diameter $D_{max}$ is elaborated and discussed in comparison with four other glass forming ability (GFA) parameters, i.e. (1) super-cooled liquid region ${\Delta}T_x (=T_x - T_g)$, (2) reduced glass transition temperature $T_{rg} (=T_g/T_l)$, (3) K parameter $K (=[T_x-T_g]/[T_l -T_x])$, and (4) gamma parameter ${\gamma}(=[T_x]/[T_l+T_g])$ in Ca-based bulk metallic glass (BMG) systems. The ${\sigma}$ parameter, defined as ${\Delta}T^*{\times}P^'$, has a far better correlation with $D_{max}$ than the GFA parameters suggested so far, clearly indicating that the liquid phase stability and atomic size mismatch dominantly affect the GFA of Ca-based BMGs. Thus, it can be understood that the GFA of BMGs can be properly described by considering structural aspects for glass formation as well as thermodynamic and kinetic aspects for glass formation.

Plasma Spray Forming 공정에 의해 제조된 텅스텐 성형체의 미세조직 형성 거동 (Microstructural Evolution of Thick Tungsten Deposit Manufactured by Atmospheric Plasma Spray Forming Route)

  • 임주현;백경호
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.403-409
    • /
    • 2009
  • Plasma spray forming is recently explored as a near-net-shape fabrication route for ultra-high temperature metals and ceramics. In this study, monolithic tungsten has been produced using an atmospheric plasma spray forming and subsequent high temperature sintering. The spray-formed tungsten preform from different processing parameters has been evaluated in terms of metallurgical aspects, such as density, oxygen content and hardness. A well-defined lamellae structure was formed in the as-sprayed deposit by spreading of completely molten droplets, with incorporating small amounts of unmelted/partially-melted particles. Plasma sprayed tungsten deposit had 84-87% theoretical density and 0.2-0.3 wt.% oxygen content. Subsequent sintering at 2500$^{\circ}C$ promoted the formation of equiaxed grain structure and the production of dense preform up to 98% theoretical density.

THE SCIENCE AND TECHNOLOGY OF MECHANICAL ALLOYING

  • Suryanarayana, C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2000년도 추계학술대회 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.10-10
    • /
    • 2000
  • Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill. This has now become an established commercial technique in producing oxide dispersion strengthened (ODS) nickel- and iron-based materials. The technique of MA is also capable of synthesizing non-equilibrium phases such as supersaturated solid solutions, metastable crystalline and quasicrystalline intermetallic phases, nanostructures, and amorphous alloys. In this respect, the capabilities of MA are similar to those of another important non-equilibrium processing technique, viz, rapid quenching of metallic melts. however, the science of MA is being investigated only during the past ten years or so. The technique of mechanochemistry, on the other hand, has had a long history and the materials produced this way have found a number of technological applications, e.g., in areas such as hydrogen storage materials, heaters, gas absorber, fertilizers. catalysts, cosmetics, and waste management. The present talk will concentrate on the basic mechanisms of formation of non-equilibrium phases by the technique of MA and these aspects will be compared with those of rapid quenching of metallic melts. Additionally, the variety of technological applications of mechanically alloyed products will be highlighted.

  • PDF

홀 확장 판재의 피로균열 발생수명 예측에 관한 연구 (A Study on the Prediction of Fatigue Crack Initiation Life of Hole Expansion Plate)

  • 이동석;이준현
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.129-135
    • /
    • 2003
  • The fatigue life of a structure can be enhanced by improving the mechanical and metallurgical aspects to strengthen the material around regions of high stress. Coldworking of holes in structures is one of the mechanical methods of strengthening material. The material for this research is A12024-T351 which is used for the primary member or aircraft. Specimens were tested under constant amplitude loading and residual stresses measured by X-ray diffraction technique. Fatigue crack initiation life was evaluated by a strain-life equation which was considered initial residual stress and residual stress relaxation exponent as a function of the strain amplitude. The predictions on fatigue crack initiation life were compared with experimental results. A wide range of discrepancies between them was found.

코팅층을 이용한 몰리브덴의 확산접합 (Diffusion Bonding of Mo with Coating Layer)

  • 박재현;권영각;장래웅
    • Journal of Welding and Joining
    • /
    • 제10권3호
    • /
    • pp.26-39
    • /
    • 1992
  • Diffusion bonding of Mo was performed by using the metallic coating of Cu and Cr on the surface to be bonded. Joint characteristics of Mo with or without coating layer were compared in metallurgical and fractograpical aspects. The results showed that the diffusion bonding with coating layer, especially with Cu coating, increased the bending strength of joint. Variation of heating cycle(elevation of temperature for a moment) did not affect significantly the mechanical properties of joint. Fractographical analysis showed that the fracture of joint bonded with Cr coating occurred at the coating layer, while that with Cu coating occurred at the base metal.

  • PDF

스테인레스강 Overlay 용접부의 Disbonding 에 관한 연구(2) - 오스테나이트계 스테인레스강 오버레이 용접금속의 PWHT에 관한 야금학적 고찰 - (Study on the Disbonding of Stainless Steel Overlay Welded Metal(Report 2) - A Metallurgical Study on PWHT of Overlaid Austenitic Stainless Steel Weld Metals -)

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • 제2권1호
    • /
    • pp.4-17
    • /
    • 1984
  • Overlaid weld metals of austenitic stainless steel in a pressure vessel of power reactor are usually post-weld heated for a long period of time after welding. The PWHT is considered as a kind of sensitizing and it is important to check the soundness of the weld metal after PWHT, especially about the precipitation of carbides. The purpose of this report is to obtain information on the relation between the change of microstructure and Post-Weld Heat Treatment in the overlaid weld metals. Metallurgical aspects of the problem on austenitic stainless steel heated at $625^{\circ}C$, $670^{\circ}C$, $720^{\circ}C$ and $760^{\circ}C$ for 3, 10, 30, 100 and 300 hours have been investigated by means of optical-micrography, micro-hardness measurement, scanning electron microscope and electron-probe micro analysis. From the results obtained, the following conclusions are drawn; 1) The PWHT above $625^{\circ}C$ for a long time causes a diffusion of carbon atoms from low alloy steel into stainless steel, and consequently carbon is highly concentrated at the boundary layer of stainless steel. 2) C in ferritic steel migrated to austenitic steel and carbides precipitated in austenitic steel along fusion line. At higher temperatures, the ferrite grains coarsened in the decarburized zone. 3) In the change of microstructure of stainless steel overlaid weld metal, the width of carbides precipitated zone and decarburized zone increased with increase of PWHT temperature and time. 4) At about $625^{\circ}C$ to $760^{\circ}C$, chromium carbides, mainly $M_{23} C_6$, precipitate very closely in the carburized layer with remarkable hardening. 5) Precipitation of delta ferrite from molten weld metal depends on solidification phenomenon. There was a small of ferrite near the bond in which the local solidification time was short, comparing with after parts of weld metal. Shape and amount of ferrite were not changed by Post-Weld Heat Treatment after solidification.

  • PDF

Airship Research and Development in the Areas of Design, Structures, Dynamics and Energy Systems

  • Stockbridge, Casey;Ceruti, Alessandro;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.170-187
    • /
    • 2012
  • Recent years have seen an outpour of revived interest in the use of airships for a number of applications.Present day developments in materials, propulsion, solar panels, and energy storage systems and the need for a more eco-oriented approach to flight are increasing the curiosity in airships, as the series of new projects deployed in recent years show; moreover, the exploitation of the always mounting simulation capabilities in CAD/CAE, CFD and FEA provided by modern computers allow an accurate design useful to optimize and reduce the development time of these vehicles.The purpose of this contribution is to examine the different aspects of airship development with a review of current modeling techniques for airship dynamics and aerodynamics along withconceptual design and optimization techniques, structural design and manufacturingtechnologies and, energy system technologies. A brief history of airships is presented followed by an analysis of conventional and unconventional airships including current projects and conceptual designs.