• 제목/요약/키워드: Metallothermic reduction method

검색결과 9건 처리시간 0.022초

금속열환원법에 의한 니오븀 분말제조시 환원제의 영향 (The Effect of Reducing Agent on the Production of Niobium Powder by Metallothermic Reduction)

  • 황선호;윤재식;김병일
    • 한국표면공학회지
    • /
    • 제42권4호
    • /
    • pp.186-189
    • /
    • 2009
  • In this study, niobium powder was made from potassium heptafluoroniobite($K_2NbF_7$) using sodium(Na) as a reductant and KCl, KF as a diluent based on the hunter metallothermic reduction method. The excesses of reductant were varied from 0%, 3%, 5% and 7%. When 7% excess of sodium was used, the un-reacted sodium remained in the reacted product. The niobium powder has been achieved by reducing 50 g of $K_2NbF_7$ with 5% sodium excess in a charge at a reduction temperature of $850^{\circ}C$. The proportion of fine fraction decreased appreciably and the yield of niobium powder improved from 65% to 85% with the increase of sodium excess. The average particle size of niobium powder is improved from 0.2 microns to 0.3 microns in the 5% excess sodium.

MR법 및 EMR법에 의한 탄탈륨 분말 제조 (The Production of Tantalum Powder by MR and EMR Method)

  • 배인성;박형호;김병일
    • 열처리공학회지
    • /
    • 제15권1호
    • /
    • pp.16-20
    • /
    • 2002
  • In conventional metallothermic reduction(MR) for obtaining tantalum powder in batch-type operation, it is difficult to control morphology and location of deposits because the reaction occurs by direct physical contact between reductants and feed materials. On the other hand, a electronically mediated reaction(EMR) is capable to overcome these difficulties through the reaction by electron transfer and have a merit of continuous process. In this study an MR and EMR method has been applied to the production of a tantalum powder by sodium reduction of $K_2TaF_7$. As the reduction temperature increases, the particle size and yield of tantalum powder obtained by MR and EMR method is increased.

MR-EMR 복합공정에 의한 탄탈륨분말의 제조시 온도변화에 따른 분말의 특성 (Characteristics of Powder with Change of Temperature in Production of Tantalum Powder by MR-EMR Combination Process)

  • 배인성;윤재식;박형호;윤동주;이민호;설경원;김병일
    • 한국분말재료학회지
    • /
    • 제10권6호
    • /
    • pp.395-405
    • /
    • 2003
  • In the conventional metallothermic reduction (MR) process for obtaining tantalum powder in batch-type operation. it is difficult to control morphology and location of deposits. On the other hand, a electronically mediated reaction (EMR) process is capable to overcome these difficulties and has a merit of continuous process, but it has the defect that the reduction yield is poor. MR-EMR combination process is a method that is able to overcome demerits of MR and EMR process. In this study, a MR-EMR combination process has been applied to the production of tantalum powder by sodium reduction of $K_2$TaF$_{7}$. The total charge passed through external circuit and average particle size (FSSS) were increased with increasing reduction temperature. The proportion of fine particle (-325 mesh) was decreased with increasing reduction temperature. The yield was improved from 65% to 74% with increasing reduction temperature. Considering the charge, impurities, morphology, particle size and yield, an reduction temperature of 1,123 K was found to be optimum temperature for MR-EMR combination process.

후처리 조건에 따른 탄탈륨 분말의 특성 (Characteristics of Tantalum Powder by Conditions of After Treatment)

  • 윤재식;박형호;배인성;김병일
    • 한국분말재료학회지
    • /
    • 제10권5호
    • /
    • pp.344-347
    • /
    • 2003
  • Pure tantalum powder has been produced by combining Na as a reducing agent, $K_2$TaF$_{7}$ as feed material, KCl and KF as a diluent in a stainless steel (SUS) bomb, using the method of metallothermic reduction. And we examined various types of after-treatment that affect the high purification of powder. A significant amount of impurities contained in recovered powder was removed in various conditions of acid washing. In particular, 20% (HCl + HNO$_3$) was effective in removing heavy metal impurities such as Fe, Cr and Ni, 8% H$_2$SO$_4$ + 8% $Al_2$(SO$_4$)$_3$ in removing fluorides such as K and F from non-reactive feed material, and 2% $H_2O$$_2$ + 1 % HF in removing oxides that formed during reaction. Significant amounts of oxygen and part of light metal impurities could be removed through deoxidation and heat treatment process. On the other hand, because it is difficult to remove completely heavy metal impurities such as Fe, Cr, and Ni through acid washing or heat treatment process if their contents are too high, it is considered desirable to inhibit these impurities from being mixed during the reduction process as much as possible.

희석제량에 따른 탄탈륨 분말 특성 및 반응온도의 영향 (Characteristic of Tantalum Powder and Effect of Reaction Temperature on the amount of Diluent)

  • 윤재식;박형호;배인성;정성만;김병일
    • 한국분말재료학회지
    • /
    • 제9권5호
    • /
    • pp.315-321
    • /
    • 2002
  • Pure tantalum powder has been produced by combining Na as a reducing agent, $K_2TaF_{7}$ as feed material, KCl and KF as a diluent in a stainless steel(SUS) bomb, using the method of metallothermic reduction. The present study investigated the effect of the amount of the diluent and reaction temperature on the characteristics of tantalum powder in the production process. The temperature applied in this study $850^{\circ}C$ and the amount of the additional reductant from +5% of the theoretical amount used for the reduction of the entire $K_2TaF_{7}$. The results showed that as the amount of the diluent increased, the reaction temperature became lower because the diluent prevented a temperature rise. Also, according to the mixture ratio of the feed materials and the diluent changed from 1 : 0.25 to 1 : 2, the particle size decreased from $5\mutextrm{m}$ to $1\mutextrm{m}$ and a particle size distribution which is below 325 mesh in fined powder increases from 71% to 83%. The average size of Tantalum powder, $2-4\mutextrm{m}$, was close to that of the commercial powders($2-5\mutextrm{m}$). Also under this condition, impurities contained in the powder were within the range allowed for the commercial Ta powders.

고체 전해커패시터용 니오븀 분말제조 (Fabrication of Niobium Powder for Solid-electrolyte Capacitors)

  • 윤재식;황선호;김병일
    • 한국표면공학회지
    • /
    • 제42권5호
    • /
    • pp.227-231
    • /
    • 2009
  • The niobium capacitor showed somewhat more unstable characteristics than the commercial tantalum capacitors, but is nonetheless considered applicable as a future substitute for tantalum capacitors. In this study, niobium powder was fabricated by metallothermic reduction process using $K_2NbF_7$ as the raw materials, KCl and KF as the diluents and Na as the reducing agent. The niobium particle size greatly decreased from 0.7um to 0.2 um as the amount of diluent increased. However if a higher surface area of powder is required, more diluents need to be used in the said method in order to produce niobium powder. The niobium powder morphology and particle size are very sensitive to a amount of sodium excess. The particle size of niobium powder increased with a increasing amount of sodium excess. When more diluent and sodium are used, the niobium powder will be contaminated with more impurities such as Fe, Cr, Ni so on.

MR-EMR 복합공정에 의한 탄탈륨분말의 제조시 과잉첨가 환원제 양에 따른 분말의 특성 (Characteristics of Powder with Amount of Reductant Excess in Production of Tantalum Powder by MR-EMR Combination Process)

  • 배인성;윤재식;박형호;김병일;이현우;김낙찬;설경원
    • 한국분말재료학회지
    • /
    • 제11권4호
    • /
    • pp.333-340
    • /
    • 2004
  • In this study, tantalum powder has been producted by MR-EMR combination process. MR-EMR combination process is a method that is able to improve demerits of MR(metallothermic reduction) and EMR(electronically mediated reaction) process. This study examined the characteristics of powder with the amount of reductant excess using $K_2$TaF$_{7}$ as feed materials, Na as a reductant and KCl/KF as a diluent. In addition, this study examined acid treatment that affect the high purification of powder. The impurities contained in powder was removed in various conditions of acid treatment. The total charge passed through external circuit and average particle size(FSSS) were increased with increasing amount of sodium excess. The proportion of fine particle(-325mesh) was decreased with increasing amount of sodium excess. The yield was improved from 70% to 76% with increasing amount of sodium excess. Considering the impurities, charge, morphology, particle size and yield, an amount of sodium excess of 10wt% were found to be optimum conditions for MR-EMR combination process.s.