• Title/Summary/Keyword: Metallic glass

Search Result 244, Processing Time 0.023 seconds

Effects of Phase Fraction and Metallic Glass-Diamond Size Ratio on the Densification of Metallic Glass/Diamond Composite (비정질/다이아몬드 복합재료에서 상분율과 비정질-다이아몬드 입자 크기 비가 성형특성에 미치는 영향)

  • Shin, Su-Min;Kim, Taek-Soo;Kang, Seung-Koo;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.173-179
    • /
    • 2009
  • In the present study, Zr-base metallic glass(MG)/diamond composites are fabricated using a combination of gas-atomization and spark plasma sintering (SPS). The densification behaviors of mixtures of soft MG and hard diamond powders during consolidation process are investigated. The influence of mixture characteristics on the densification is discussed and several mechanism explaining the influence of diamond particles on consolidation behaviour are proposed. The experimental results show that consolidation is enhanced with increasing diamond/Metallic Glass(MG) size ratio, while the diamond fraction is fixed.

Effect of Carbon-Nanotube Addition on Thermal Stability of Ti-based Metallic Glass Composites

  • Hsu, Chih-Feng;Lee, Pee-Yew
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1057-1058
    • /
    • 2006
  • The preparation of $Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and carbon nanotube (CNT) powder mixture after 8 h milling. In the ball-milled composites, the initial CNT particles were dissolved in the Ti-based alloy glassy matrix. The bulk metallic glass composite was successfully prepared by vacuum hot pressing the as-milled CNT/$Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders. A significant hardness increase with the CNT additions was observed for the consolidated composite compacts.

  • PDF

Strain Rate Dependency of Deformation Behavior in $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ Bulk Metallic Glass ($Zr_{55}Cu_{30}Al_{10}Ni_{5}$ 벌크 유리상 금속 변형거동의 변형률속도 의존성)

  • Shin, Hyung-Seop;Jeong, Young-Jin;Ko, Dong-Kyun;Oh, Sang-Yeob
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1145-1150
    • /
    • 2003
  • Zr-based bulk metallic glasses have a significant mechanical properties such as high strength and elastic strain limit, and a good processing ability due to the deformation behavior such as superplasticity under supercooled liquid region. Recently, many researches on the determination of optimum working condition in various bulk metallic glasses have been carried out. In this study, the deformation behavior and forming conditions of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass were investigated under three different strain rates and at various temperatures between 627K and 727K. The glass transition temperature, crystallization temperature and supercooled liquid region of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass are 680K, 762K and 82K, respectively.

  • PDF

Deformation Behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ Bulk Metallic Glass at High Temperatures (고온에서 $Zr_{55}Al_{10}Ni_5Cu_{30}$ 벌크 유리금속의 변형거동)

  • Jeong, Young-Jin;Kim, Ki-Hyun;Oh, Sang-Yeob;Shin, Hyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.342-347
    • /
    • 2004
  • The deformation behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass under tensile loading at different range of strain rates and temperatures between 680 K and 740 K were investigated. The variation in the deformation behavior of $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass which resulted from the crystallization induced during testing was reported. The$Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass has showed either homogeneous or inhomogeneous deformation depending on test condition. It exhibited a maximum elongation of about 560 % at the condition of $407^{\circ}C{\times}\;10^{-4}/s$. The flow behavior exhibited three different types and the flow stress became lower at higher temperatures and lower strain rates. The increase of the time elapsed during heating resulted in the partial crystallization of bulk metallic glass phase and eventually strain hardening and brittle fracture.

  • PDF

Micro-deformation behavior of Brittle Hf-based Metallic Glass during Mechanical Milling (기계적 합금화 공정에 의한 Hf계 비정질 분말의 미세변형거동 관찰)

  • Kim, Song-Yi;Lee, A-Young;Cha, Eun-Ji;Kwon, Do-Hun;Hong, Sung-Uk;Lee, Min-Woo;Kim, Hwi-Jun;Lee, Min-Ha
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.246-250
    • /
    • 2018
  • In this study, we investigate the deformation behavior of $Hf_{44.5}Cu_{27}Ni_{13.5}Nb_5Al_{10}$ metallic glass powder under repeated compressive strain during mechanical milling. High-density (11.0 g/cc) Hf-based metallic glass powders are prepared using a gas atomization process. The relationship between the mechanical alloying time and microstructural change under phase transformation is evaluated for crystallization of the amorphous phase. Planetary mechanical milling is performed for 0, 40, or 90 h at 100 rpm. The amorphous structure of the Hf-based metallic glass powders during mechanical milling is analyzed using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Microstructural analysis of the Hf-based metallic glass powder deformed using mechanical milling reveals a layered structure with vein patterns at the fracture surface, which is observed in the fracture of bulk metallic glasses. We also study the crystallization behavior and the phase and microstructure transformations under isothermal heat treatment of the Hf-based metallic glass.

Influence of Stress-strain on the Microstructural Change in the Metallic Glass and Metallic Glass Matrix Composite

  • Kim, Song-Yi;Lee, A-Young;Oh, Hye-Ryung;Lee, Min-Ha
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.44-51
    • /
    • 2015
  • At room temperature, metallic glasses deform inhomogeneously by strain localization into narrow bands as a result of yielding due to an external force. When shear bands are generated during deformation, often nanocrystals form at the shear bands. Experimental results on the deformation of bulk metallic glass in the current study suggest that the occurrence of nanocrystallization at a shear band implies the loading condition that induces deformation is more triaxial in nature than uniaxial. Under a compressive stress state, the geometrical constraint strain imposed by the stress triaxiality plays a crucial role in the deformation-induced nanocrystallization at the shear bands.

Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite (비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동)

  • Jang, Beom Taek;Yi, Seong Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2014
  • For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ $Cr_2Ni_3$ precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

Study for Local Glass Transition of Bulk Metallic Glasses using Atomic Strain (원자변형률을 이용한 비정질 금속의 천이온도에 관한 연구)

  • Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.104-109
    • /
    • 2011
  • Bulk metallic glasses (BMG) have been greatly improved by the advance of synthesis process during last three decades. It was also found that the Glass Forming Ability (GFA) strongly depends on the glass transition temperature. When the temperature approaches to a critical value, the crystals nucleation from the supercooled liquid can be suppressed so that bulk glass formation possible. Egami and others found that the local glass transition temperature depends on the volumetric strain of each atom and suggested the critical transition temperature. In this paper, we explore the strain dependency of local glass transition temperature using the atomic strain defined by the deformation tensor for the Voronoi polyhedra.