• Title/Summary/Keyword: Metallic cross-sectional structure

Search Result 2, Processing Time 0.016 seconds

Study of the Method to Examine the Cause of Damage to a Flat-Type Vinyl Cord (VFF) According to the Type of Energy Source (에너지원의 종류에 따른 비닐평형코드(VFF)의 소손원인 판정기법에 관한 연구)

  • Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.83-88
    • /
    • 2011
  • This study presented the structure and characteristics of vinyl cords used for wiring electric equipment and appliances and analyzed the photographs of damaged flat-type vinyl cords (VFF, $1.25mm^2$) and the metallic cross-sectional structure of melted conductors. Normal VFFs were made by twisting several strands together and the surface of the conductor was red brown. In addition, from the analysis of the metallic structure of the conductor, it was found that its grains had been elongated. The surface of a VFF damaged by normal flame showed no sheen with carbonized insulation material fused on the conductor surface. In addition, from the analysis of the cross-sectional structure of the melted area, it was found that voids of a certain shape were formed on it but that the cord's own elongation structure could not be checked. The cross-sectional analysis of the melted conductor damaged by the external flame applied to a VFF to which electric current was being applied showed no elongation structure for each cord, and revealed that irregular voids and a columnar structure had grown. The surface of the VFF damaged by overcurrent was uniformly carbonized and the cross-sectional structure analysis of the melted conductor revealed that the dendritic structure had grown. The analysis of the characteristics of the VFF melted by short-circuit showed that even though some part of the surface was contaminated, it showed little sheen and that the area rebounded by melting was round in shape. In addition, the cross-sectional structure analysis using a metallurgical microscope showed the boundary surface and columnar structure and revealed an amorphous structure like normal copper at areas other than the melted conductor.

Epitaxial Growth and Characterization of Zinc-blende CrAs/GaAs/MnAs/GaAs Multilayers

  • Wang W.H.;Manago T.;Akinaga H.
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • We report on the growth, structural and transport properties of zinc-blende CrAs/GaAs/MnAs/GaAs multilayers on GaAs(001) substrates. Structural analyses using in-situ reflection high-energy electron diffraction and exsitu cross-sectional transmission electron microscopy confirmed the realization of a zinc-blende crystal structure. Room temperature Hall measurements reveal that the as-grown multilayer exhibits p-type conductivity with a very low resistivity of $0.052\;\omega{cm}$, a high carrier concentration of $6.2X10^{19}\;cm^{-3}$ and a Hall mobility of $1.8\;cm^2/Vs$. We also observed a clear decrease of the resistivity in samples after low temperature annealing.