• 제목/요약/키워드: Metallic Interfaces

검색결과 37건 처리시간 0.023초

Nanoplasmonics: Enabling Platform for Integrated Photonics and Sensing

  • Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.75-75
    • /
    • 2015
  • Strong interactions between electromagnetic radiation and electrons at metallic interfaces or in metallic nanostructures lead to resonant oscillations called surface plasmon resonance with fascinating properties: light confinement in subwavelength dimensions and enhancement of optical near fields, just to name a few [1,2]. By utilizing the properties enabled by geometry dependent localization of surface plasmons, metal photonics or plasmonics offers a promise of enabling novel photonic components and systems for integrated photonics or sensing applications [3-5]. The versatility of the nanoplasmonic platform is described in this talk on three folds: our findings on an enhanced ultracompact photodetector based on nanoridge plasmonics for photonic integrated circuit applications [3], a colorimetric sensing of miRNA based on a nanoplasmonic core-satellite assembly for label-free and on-chip sensing applications [4], and a controlled fabrication of plasmonic nanostructures on a flexible substrate based on a transfer printing process for ultra-sensitive and noise free flexible bio-sensing applications [5]. For integrated photonics, nanoplasmonics offers interesting opportunities providing the material and dimensional compatibility with ultra-small silicon electronics and the integrative functionality using hybrid photonic and electronic nanostructures. For sensing applications, remarkable changes in scattering colors stemming from a plasmonic coupling effect of gold nanoplasmonic particles have been utilized to demonstrate a detection of microRNAs at the femtomolar level with selectivity. As top-down or bottom-up fabrication of such nanoscale structures is limited to more conventional substrates, we have approached the controlled fabrication of highly ordered nanostructures using a transfer printing of pre-functionalized nanodisks on flexible substrates for more enabling applications of nanoplasmonics.

  • PDF

계면편석 억제와 미세구조 조절에 의한 중합금의 기계적성질 향상 (Suppression of Interfacial Segregation and Control of Microstructure for Improvement of Mechanical Properties of W-Ni-Fe Heavy Alloy)

  • 강석중
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1993년도 추계학술강연 및 발표대회강연 및 발표논문 초록집
    • /
    • pp.3-3
    • /
    • 1993
  • In mechanical testing of W-Ni-Pe heavy alloys, the cracks nucleate at W/W interface and propagate through W/ Imatrix interface or through matrix phase together with the cleavage of W grains. The mechanical properties can therefore be improved by control of the interfacial strength and area. In this presentation, some experimental result and techniques on this subject will be reviewed and discussed. The hydrogen embrittlement caused by the hydrogen segregation at interfaces during sintering in an hydrogen atmosphere can be removed by an heat-treattnent in vacuum or in an inert atmosphere. The heat-treatment condition can be estimated by using a diffusion equation for a cylindrical shape. The mechanical properties, in particular the impact property, are degraded by the segregation of non-metallic impurities, such as Sand P. The degradation can be prevented by adding a fourth element, such as La or Ca, active with the non-metallic impurities. The cyclic heat-treatment at usual heat-treattnent tempemture causes the penetration of matrix between W/W grain boundaries and results in remarkable increase in impact energy. This is due to an increase in the area of ductile failure during the impact test. The instability of W/matrix interface casued by addition of Mo or Re can be controlled by using W powders of different size. The increase in the interfacial area in found to be related to the presence of non-equilibrium pure W gmins among W(Mo or Re) solid solution gmins.

  • PDF

THREE DIMENSIONAL ATOM PROBE STUDY OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.673-682
    • /
    • 2012
  • Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multi-component metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

Corrosion Prediction of Metallic Cultural Heritage Assets by EIS

  • Angelini, E.;Grassini, S.;Parvis, M.;Zucchi, F.
    • Corrosion Science and Technology
    • /
    • 제18권4호
    • /
    • pp.121-128
    • /
    • 2019
  • Electrochemical Impedance Spectroscopy (EIS) was used to predict corrosion behaviour of metallic Cultural Heritage assets in two monitoring campaigns: 1) an iron bar chain exposed indoor from over 500 years in the Notre Dame Cathedral in Amiens (France); and 2) a large weathering steel sculpture exposed outdoor from tens of years in Ferrara (Italy). The EIS portable instrument employed was battery operated. In situ EIS measurements on the iron chain could be used to investigate the phenomena involved in the electrochemical interfaces among various corrosion products and assess and predict their corrosion behaviour in different areas of the Cathedral. Meanwhile, the sculpture of weathering steel, like most outdoor artefacts, showed rust layers of different chemical composition and colour depending on the orientation of metal plates. The EIS monitoring campaign was carried out on different areas of the artefact surface, allowing assessment of their protective effectiveness. Results of EIS measurements evidenced how employing a simple test that could be performed in situ without damaging the artefacts surface is possible to quickly gain knowledge of the conservation state of an artefact and highlight potential danger conditions.

Epitaxial Overlayers vs Alloy Formation at Aluminum-Transition Metal Interfaces

  • Smith, R.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.29-29
    • /
    • 1999
  • The synthesis of layered structures on the nanometer scale has become essential for continued improvements in the operation of various electronic and magnetic devices. Abrupt metal-metal interfaces are desired for applications ranging from metallization in semiconductor devices to fabrication of magnetoresistive tunnel junctions for read heads on magnetic disk drives. In particular, characterizing the interface structure between various transition metals (TM) and aluminum is desirable. We have used the techniques of MeV ion backscattering and channeling (HEIS), x-ray photoemission (ZPS), x-ray photoelectron diffraction(XPD), low-energy ion scattering (LEIS), and low-energy electron diffraction(LEED), together with computer simulations using embedded atom potentials, to study solid-solid interface structure for thin films of Ni, Fe, Co, Pd, Ti, and Ag on Al(001), Al(110) and Al(111) surfaces. Considerations of lattice matching, surface energies, or compound formation energies alone do not adequately predict our result, We find that those metals with metallic radii smaller than Al(e.g. Ni, Fe, Co, Pd) tend to form alloys at the TM-Al interface, while those atoms with larger atomic radii(e.g. Ti, Ag) form epitaxial overlayers. Thus we are led to consider models in which the strain energy associated with alloy formation becomes a kinetic barrier to alloying. Furthermore, we observe the formation of metastable fcc Ti up to a critical thickness of 5 monolayers on Al(001) and Al(110). For Ag films we observe arbitrarily thick epitaxial growth exceeding 30 monolayers with some Al alloying at the interface, possible driven by interface strain relief. Typical examples of these interface structures will be discussed.

  • PDF

고체 산화물 연료전지용 Cr계 금속 연결재 제조 및 특성 연구 (Fabrication and Characterization of Cr Alloy for Metallic Interconnect of Solid Oxide Fuel Cell)

  • 송락현
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.58-65
    • /
    • 2005
  • The $LaCrO_3$-dispersed Cr alloys for metallic interconnect of solid oxide fuel cell were prepared as a function of $LaCrO_3$ content in the range of 5 to 25 vol.% and were sintered at 1500$^{\circ}C$ under an Ar atmosphere with 5 vol.% $H_2$. The sintering and oxidation behaviors of these alloys were examined. The alloys indicated a good sinterability above 95% relative density at a given sintering condition, and their sintering densities is independent on $LaCrO_3$ content. The $LaCrO_3$ particles of the sintered alloys were concentrated on interfaces of Cr particles, and the size of the Cr particles increased with decreasing $LaCrO_3$ content, which is caused by inhibited grain growth of Cr particle by $LaCrO_3$ particle. The oxidation test showed all $LaCrO_3$-dispersed Cr alloys have good oxidation resistance as compared with pure Cr, which is attributed to presence of $LaCrO_3$ at the interface at which the oxidation reaction occurs rapidly. The Cr alloys with about 15 vol.% $LaCrO_3$ are very resistant to oxidation.

Interfaces Between Rubber and Metallic or Textile Tire Cords

  • Ooij Wim J. Van;Luo Shijian;Jayaseelan Senthil K,
    • Elastomers and Composites
    • /
    • 제34권4호
    • /
    • pp.299-314
    • /
    • 1999
  • Bonding metal and textile components to rubber has always posed a problem. In this paper, an attempt had been made to modify textile and metal surfaces for bonding with rubber. The metal surfaces were modified using silane coupling agents and textile fibers were modified using plasma polymerization techniques. Some results on adhesion of metals to a range of sulfur-cured rubber compounds using a combination of organofunctional silanes are given here. The treatment was not only effective for high-sulfur compounds but also for low-sulfur com pounds as used in engine mounts and even for some semi-EV compounds. Coatings of plasmapolymerized pyrrole or acetylene were deposited on aramid and polyester tire cords. Standard pull-out force adhesion measurements were used to determine adhesion of tire cords to rubber compounds. The plasma coatings were characterized by various techniques and the performance results are explained in an interpenetrating network model.

  • PDF

MAGNETORESISTANCE OF EPITAXIALLY GROWN METALLIC MULTILAYERS

  • Kamada, Yasuhiro;Saza, Yasuyuki;Matsui, Masaaki
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.386-392
    • /
    • 1996
  • The epitaxial TM/bcc-Cr(001) (TM=Fe, Co, Ni) multilayers have been prepared using MBE. The crystal structure, interlayer exchange coupling and magnetoresistance of those multilayers have been discussed. The structure of Fe, Co and Ni grown on bcc-Cr(001) exhibited bcc(001), distorted hcp(1120) and fcc(110), respectively. In Fe/Cr multilayes, an oscillatory exchange coupling has been observed, but not observed in Ni/Cr system, which may come from the large mixing at interfaces. Large MR ratio (116%, 4.2K) has been obtained in Fe/Cr system, but only 2% in Co/Cr system. This difference can be understood from the view point of the relative potential geight for down spin electrons between TM and Cr.

  • PDF

Development of multi-cell flows in the three-layered configuration of oxide layer and their influence on the reactor vessel heating

  • Bae, Ji-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.996-1007
    • /
    • 2019
  • We investigated the influence of the aspect ratio (H/R) of the oxide layer on the reactor vessel heating in three-layer configuration. Based on the analogy between heat and mass transfers, we performed mass transfer experiments to achieve high Rayleigh numbers ranging from $6.70{\times}10^{10}$ to $7.84{\times}10^{12}$. Two-dimensional (2-D) semi-circular apparatuses having the internal heat source were used whose surfaces of top, bottom and side simulate the interfaces of the oxide layer with the light metal layer, the heavy metal layer, and the reactor vessel, respectively. Multi-cell flow pattern was identified when the H/R was reduced to 0.47 or less, which promoted the downward heat transfer from the oxide layer and possibly mitigated the focusing effect at the upper metallic layer. The top boundary condition greatly affected the natural convection of the oxide layer due to the presence of secondary flows underneath the cold light metal layer.

Interfacial Properties of Antiferromagnetically-coupled Fe/Si Multilayeres Films

  • Kim, K.W.;Y.V.Kudryavtsev;J.Y.Rhee;J.Dubowik;Lee, Y.P.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.168-168
    • /
    • 1999
  • Recently, Fe/Si multilayered films (MLF) have been a focus of interest due to the strong antiferromagnetic (AF) coupling observed in such kind of MLF originates from the same nature as in the metal/metal MLF. In particular, a question of whether the spacer layer in the Fe/Si MLF is metallic or semiconducting is of interest. In spite of various experimental techniques envolved in the study, the chemical composition and the properties of the interfacial regions in the MLF exhibiting the AF coupling is still questionable. The nature of the AF coupling and the interfacial properties of Fe/Si MLF are investigated in this study. A series of Fe/Si MLF with a fixed nominal thickness of Fe(3nm) and a variable thickness of Sk(1.0-2.2nm) were deposited by RF-sputtering onto glass substrates at room temperature. The atomic structures and the actual sublayer thicknesses of the Fe/Si MLF are investigated by using x-ray diffraction. The magnetic-field dependence of the equatorial Kerr effect clearly shows an appearance of the AF coupling between Fe sublayers at tsi = 1.5 - 1.8 nm. the drastic discrepancies between the experimental magnetooptical (MO) and optical properties, and based on the assumption of sharp interfaces between Fe and Si sublayers leads to a conclusion that pure si is absent in the AF-coupled Fe/Si MLF. Introducing in the model nonmagnetic semiconducting FeSi alloy layers between Fe and Si sublayers or as spacer between pure Fe sublayers only slightly improves the agreement between model and experiment. A reasonable agreement between experimental and simulated MO spectra was reached with using the fitted optical properties for the spacer with a typical metallic type of behavior. The results of the magnetic properties measured by vibrating sample magnetometer and magnetic circular dichroism are also analyzed in connection with the MO and optical properties.

  • PDF