• 제목/요약/키워드: Metallic Environment

검색결과 241건 처리시간 0.03초

다단연소사이클 엔진 적용을 위한 Ni-Cr 코팅에 관한 연구 (Study on Ni-Cr Electro Plating Process for Staged Combustion Cycle Engine)

  • 배병현;황양진;이규환;이병호;한영민;김영준;노용오;조황래;현성윤;방정석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.857-863
    • /
    • 2017
  • 본 논문은 다단연소사이클 엔진의 연소실 내벽을 고온, 고압의 환경으로부터 보호하기 위한 열차폐 코팅 공정 개발에 관한 내용이다. 기존 연소기 내벽에는 열차폐 특성이 우수한 Zr 기반의 세라믹용사코팅을 적용했지만, 세라믹의 특성상 연소실 내벽(금속)과 열팽창계수 차이로 인해 박리가 발생할 수 있다. 때문에 로켓 선진국에서는 열차폐 효과를 다소 희생 하더라도 밀착력 향상을 위하여 금속계 코팅인 Ni-Cr 도금을 적용하고 있다. 본 연구에서는 연소기에 적용 가능한 상향 순환식 유동셀을 적용한 도금조를 개발했으며, 반복적인 공정 개선을 통해 도금 두께 $100{\mu}m$이상, ${\pm}10%$의 두께 균일도를 만족하는 Ni, Cr 도금 공정조건을 확립했다.

  • PDF

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • 제45권6호
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

Recycling of rayon industry effluent for the recovery and separation of Zn/Ca using Thiophosphinic extractant

  • Jha, M.K.;Kumar, V.;Bagchi, D.;Singh, R.J.;Lee, Jae-Chun
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2006년도 춘계임시총회 및 제27회 학술발표대회
    • /
    • pp.78-85
    • /
    • 2006
  • In textile industries, waste effluent containing zinc is generated during the manufacture of rayon yarn from the wood pulp or cotton linters. Due to the strict environmental regulations and the presence of toxic metallic and other constituents, the discharge of industrial effluents in the sewage or disposal of solid sludge as landfill is restricted. Before recycling of zinc as zinc sulphate solution to the spinning-bath of the rayon manufacturing plant the zinc sulphate solution must be free from calcium, which is deleterious to the process as gypsum precipitates with the increase in concentration and forms scale in the bath. In the present work an attempt has been made to develop a process following solvent extraction technique using thiophosphinic extractants, Cyanex 272 and 302 modified with isodecanol and diluted in kerosene to recover zinc from rayon effluent. Various process parameters viz. extraction of zinc from different concentration of solution, distribution ratio, selective extraction, O/A ratio on extraction and stripping from the loaded organic, complex formation in the organic phase etc. have been studied to see the feasibility of the process. The extractant Cyanex 302 has been found selective for the recovery of 99.99% of zinc from the effluent above equilibrium pH 3.4 maintaining the O/A ratio of 1/30 leaving all the calcium in the raffinate. It selectively extracted zinc in the form of complex $[R_{2}Zn.3RH]_{org}$ and retained all the calcium in the aqueous raffinate. The zinc from the loaded Cyanex 302 can be stripped with 10% sulphuric acid at even O/A ratio of 10 without affecting the stripping efficiency. The stripped solution thus obtained could be recycled in the spinning bath of the rayon plant. The raffinate obtained after the recovery of zinc could be disposed safely without affacting environment.

  • PDF

이온질화된 공구강 표면의 산화 및 공식거동 (Corrosion and Oxidation Behaviors of ion-nitrided tool Steels)

  • 최한철;이호종;정용운
    • 한국표면공학회지
    • /
    • 제38권3호
    • /
    • pp.126-135
    • /
    • 2005
  • SKD 11 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness and creep strength as well as excellent oxidation resistance. The ion nitrided tool steel containing Mo results in improvement of corrosion resistance, strength at high temperature and pitting resistance, especially in $Cl^-$ contained environment. But the Mo addition causes a disadvantage such as lower oxidation resistance at elevated temperature. In this study, several effects of ion-disadvantage on the oxidation characteristics for SKD 11 steel with various oxidation temperature were investigated. SKD 11 steels were manufactured by using vacuum furnace and solutionized for 1 hr at $1,050^{\circ}C$. Steel surface was ion nitrided at $500^{\circ}C$ for 1 hr and 5 hr by ion nitriding equipment. ion nitrided specimen were investigated by SEM, OM and hardness tester. Oxidation was carried out by using muffle furnace in air at $500^{\circ}C,\;700^{\circ}C\;and\;900^{\circ}C$ for 1hr, respectively. Oxidation behavior of the ion nitrided specimen was investigated by SEM, EDX and surface roughness tester. The conclusions of this study are as follows: It was found that plasma nitriding for 5 hr at $500^{\circ}C$, compared with ion nitriding for 1 hr at $500^{\circ}C$, had a thick nitrided layer and produced a layer with good wear, corrosion resistance and hardness as nitriding time increased. Nitrided SKD 11 alloy for 1hr showed that wear resistance and hardness decreased, whereas surface roughness increased, compared with nitrided SKD 11 alloy for 5 hr. The oxidation surface at $900^{\circ}C$ showed a good corrosion resistance.

1300℃급 가스터빈 1단 블레이드의 코팅분석을 이용한 열화평가 (Evaluation of the Degradation of a 1300℃-class Gas Turbine Blade by a Coating Analysis)

  • 송태훈;장성용;김범수;장중철
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.901-906
    • /
    • 2010
  • The first stage blade of a gas turbine was operated under a severe environment which included both $1300^{\circ}C$ hot gas and thermal stress. To obtain high efficiency, a thermal barrier coating (TBC) and an internal cooling system were used to increase the firing temperature. The TBC consists of multi-layer coatings of a ceramic outer layer (top coating) and a metallic inner layer (bond coat) between the ceramic and the substrate. The top and bond coating layer respectively act as a thermal barrier against hot gas and a buffer against the thermal stress caused by the difference in the thermal expansion coefficient between the ceramic and the substrate. Particularly, the bondcoating layer improves the resistance against oxidation and corrosion. An inter-diffusion layer is generated between the bond coat and the substrate due to the exposure at a high temperature and the diffusion phenomenon. A thickness measurement result showed that the bond coat of the suction side was thicker than that of the pressure side. The thickest inter-diffusion zone was noted at SS1 (Suction Side point 1). A chemical composition analysis of the bond coat showed aluminum depletion around the inter-diffusion layer. In this study, we evaluated the properties of the bond coat and the degradation of the coating layer used on a $1300^{\circ}C$-class gas turbine blade. Moreover, the operation temperature of the blade was estimated using the Arrhenius equation and this was compared with the result of a thermal analysis.

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

빅데이터 환경 분석과 글로벌 경쟁력 확보 방안에 대한 연구 (A Study on Securing Global Big Data Competitiveness based on its Environment Analysis)

  • 문승혁
    • 문화기술의 융합
    • /
    • 제5권2호
    • /
    • pp.361-366
    • /
    • 2019
  • 현대 지능정보사회에서 매일 새롭게 만들어지고 유통되는 데이터의 양은 상상을 초월한다. SNS나 인터넷을 통한 데이터로부터 정부나 기업으로부터 창출되는 정보에 이르기까지 다양하다. 이러한 다양한 데이터들이 가공되지 않은 원유와 같이 무한한 가치를 지닌 채 우리 곁에 있다. 축적된 데이터에서 유용한 상관관계를 찾아내고 미래의 불확실성에 대한 예측력을 강화하기 위하여 데이터 마이닝 등을 통한 빅데이터 분석 및 활용은 현대 산업사회에서 모든 영역에 걸쳐 그 중요성이 증대되고 있다. 본 논문에서는 복잡한 현대사회가 생산해 내는 빅데이터의 효율적 관리 및 활용에 대하여 연구한다. 또한 4차 산업혁명시대에 빅데이터를 기반으로 전반적인 산업 경쟁력을 확보하기 위한 전략, 산업 간 시너지 창출 및 비용의 절감과 효과적인 적용방안에 대하여 고찰한다.

리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동 (Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt)

  • 조수행;홍순석;강대승;박병흥;허진목;이한수
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Ti3C2Tx MXene의 열처리에 따른 구조적, 전기적 특성 변화 (Changes in the Structural and Electrical Properties of Ti3C2Tx MXene Depending on Heat Treatment)

  • 김자현;노진서
    • 한국재료학회지
    • /
    • 제32권5호
    • /
    • pp.264-269
    • /
    • 2022
  • Ti3C2Tx MXene, which is a representative of the two-dimensional MXene family, is attracting considerable attention due to its remarkable physicochemical and mechanical properties. Despite its strengths, however, it is known to be vulnerable to oxidation. Many researchers have investigated the oxidation behaviors of the material, but most researches were conducted at high temperatures above 500 ℃ in an oxidation-retarding environment. In this research, we studied changes in the structural and electrical properties of Ti3C2Tx MXene induced by low-temperature heat treatments in ambient conditions. It was found that a number of TiO2 particles were formed on the MXene surface when it was mildly heated to 200 ℃. Heating the material to higher temperatures, up to 400 ℃, the phase transformation of Ti3C2Tx MXene to TiO2 was accelerated, resulting in a TiO2/Ti3C2Tx hybrid. Consequently, the metallic nature of pure Ti3C2Tx MXene was transformed to semiconductive behavior upon heat-treating at ≥ 200 ℃. The results of this research clearly demonstrate that Ti3C2Tx MXene may be easily oxidized even at low temperatures once it is exposed to air.

LA-ICP/MS를 이용한 담수 어류 이석 내 금속 원소 농도 분석 (Analysis of the Concentration of Metal Elements in Freshwater Fish Otolith Using LA-ICP/MS)

  • 박현우;윤숙희;박재선;임보라;이혜리;최종우
    • 생태와환경
    • /
    • 제52권4호
    • /
    • pp.324-332
    • /
    • 2019
  • 본 연구는 Laser ablation ICP/MS (이하 LA-ICP/MS)를 이용한 환경오염 추적연구를 위하여 어류 내 이석을 분석하였다. 어류의 이석은 어류가 서식하는 환경에 영향을 받는 것으로 알려져 있어 국외에서는 이를 활용한 연구가 활발하나 국내에서는 이에 대한 연구가 미비한 실정이다. 그래서 본 연구에서는 환경오염의 지표로 사용되는 금속 원소의 성분 분석을 통하여 어류 이석을 이용한 환경오염 추적 가능성을 파악하고자 하였다. 또한 금속 원소의 성분 분석을 위해서는 전처리 과정을 줄여 분석 시간을 단축시킬 수 있는 것으로 알려진 LA-ICP/MS를 이용하였다. 시료채취는 연구지역과 배경지역으로 나누어 실험을 진행하였고, 실험 어종은 담수종인 잉어를 선정하였다. LA-ICP의 분석 최적 조건을 정립하기 위하여 이석 표준물질인 FEBS-1을 이용하여 9개 금속 원소(Li, Mg, Mn, Cu, Zn, Sr, Ba, Pb, U)의 정확도와 정밀도를 확인하였다. 정립한 조건을 이용하여 실제시료를 분석한 결과, 연구지역에서 채집한 어류 이석 내 금속 원소 성분의 총 농도가 2202.9 mg kg-1으로 배경 지역의 1086.3 mg kg-1보다 2.03배 높게 측정되었다. 원소별로는 Li과 U을 제외한 모든 원소가 연구 지역이 배경지역보다 높게 나타났다. 그리고 퇴적물 측정망 분석 자료와 비교한 결과, Zn, Pb, Cu가 두 지역의 퇴적물 금속 원소 농도 분포와 어류 이석 내 금속 원소 농도 분포 경향이 유사하게 나타났다. 이러한 결과로 보아 어류 내 이석은 퇴적물과 같이 환경오염원을 추적하는 데 활용할 수 있다는 것을 확인하였다.